LIST OF EXPERIMENTS

S.NO. NAME OF EXPERIMENTS PAGE NO.

1 Develop a VHDL test bench code for testing and implement
addition, subtraction, multiplication and division on FPGA kit.

2 Write a VHDL program for Buzzer Interface.

3 Develop a VHDL test bench code for testing 7 segment LED
display.

4 Develop a VHDL test bench code for testing 4-bit binary counter.

5 Develop a VHDL test bench code for testing simple gates.

6 Develop a VHDL test bench code & implement of FPGA kit for
Multiplexer and De-Multiplexer.

7 Develop a VHDL test bench & implement of FPGA kit for Encoder
and Decoder.

8 Design and implementation of Half Adder and Full Adder.

9 Design and implementation of D flip flop.

10 Write a simple program with two separate LED blinking tasks.
To interface a stepper motor and control the speed of rotation by

11 implementing RTOS delay functions.

COURSE OUTCOME

After the completion of the course the students will be able to-
CO1- Write VHDL test bench code for testing of various mathematical operation and
combinational and sequential circuits.

CO2- Write VHDL test bench code for testing of DC motor, 7 segment LED display, traffic
light control, counters etc.

CO3- Design and implement the combinational & sequential circuits.
C04-Design and implement embedded system based projects.

CO5- Write the theory and procedure of experiments conducted by them.

AIM OF THE EXPERIMENT-

Develop a VHDL test bench code for testing and implement addition, subtraction,
multiplication and division on FPGA kit.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software
3. FPGA / CPLD training Kit.

PROCEDURE:
- New project and type the project name and check the top level source type as HDL

‘Enter the device properties and click Next

- Click New Source and Select the Verilog Module and then give the file name
-Give the Input and Output port names and click finish.

‘Type the Verilog program and save it

‘Double click the synthesize XST and check syntax

-Simulate the waveform by behavioral simulation

- For implementation Select User constraints and give input and output port pin
number

-Click Implement design for Translate, map and place & route
-Generate .bit file using programming file

‘Implement in FPGA through parallel-JTAG cable

-Check the behavior of design in FPGA by giving inputs
PROGRAM:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity Arithmetic_operation is
Port (NUM1 :in STD_LOGIC_VECTOR (4 downto 0) :="00000";
NUM2 :in STD_LOGIC_VECTOR (4 downto 0) :="00000";
SUM, SUB, MUL, DIV : out STD_LOGIC_VECTOR (4 downto 0));
end Arithmetic_operation ;
architecture Behavioral of Arithmetic_operation is
begin
SUM <= NUM1 + NUM2;

SUB <= NUM1 - NUM2Z;

MUL <= NUM1 * NUM2;

DIV <= NUM1 / NUM2;
end Behavioral;

CONCLUSION:

AIM OF THE EXPERIMENT-

Write a VHDL program for Buzzer Interface.

EQUIPMENT REQUIRED:

-PC
-XILINX
- FPGA / CPLD training Kit.

THEORY: Buzzer

Piezo buzzer is an electric component that comes in different shapes and sizes, which
can be used to create sound waves when provided with electrical signal. piezo
buzzer requires a square wave to produce a tone.

Interfacing Piezo buzzer with FPGA Development Kit

The FPGA Development Kit has Piezo buzzer, indicated as in Figure. Buzzer is driven
by transistor Q1. FPGA can create sound by generating a PWM(Pulse Width
Modulated) signal - a square wave signal, which is nothing more than a sequence of
logic zeros and ones. Frequency of the square signal determines the pitch of the
generated sound. To enable buzzer, place jumper JP at E label mark position and to
disable buzzer place jumper JP at D Position.

BUZZER SMALL
+3V3
CON3 LS3
J11

Q7 1

- BC847 ,
R53 4k ©
BUZZER | A W S0T-23
FPGA

ALGORITHM:
- New project and type the project name and check the top level source type as HDL

-Enter the device properties and click Next

- Click New Source and Select the Verilog Module and then give the file name
-Give the Input and Output port names and click finish.

‘Type the Verilog program and save it

‘Double click the synthesize XST and check syntax

‘Simulate the waveform by behavioral simulation

- For implementation Select User constraints and give input and output port pin
number

-Click Implement design for Translate, map and place & route
-Generate .bit file using programming file

‘Implement in FPGA through parallel-JTAG cable

‘Check the behavior of design in FPGA by giving inputs

VHDL Code Description:

The following VHDL Code demonstrates the functionality of piezo buzzer. PWM pulse
is applied with 2s duty cycle. Buzzer produce beeps sound every 1 sec.

VHDL CODE-
library IEEE;

use [EEE.STD_LOGIC_1164.ALL;
use [EEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity buzz is
port (clock: in std_logic;

a :outstd_logic

);

end buzz;
architecture Behavioral of buzz is
begin
process(clock)
variable i : integer := 0;
begin
if clock'event and clock = '1" then
ifi <=50000000 then
i=i+1;

a<="1"

elsifi > 50000000 and i < 100000000 then
i=i+1;

a<="0"

elsif i =100000000 then

i:=0;

end if;

end if;

end process;

end Behavioral;

User Constraint File

NET "clock" LOC ="p185" ;
NET "a" LOC="p1l16" ;

CONCLUSION-

Thus the vhdl code for buzzer was simulated successfully.

AIM OF THE EXPERIMENT-
Develop a VHDL test bench code for testing 7 segment LED display.

EQUIPMENT REQUIRED:
1. PC

2. XILINX ISE software
3. FPGA kit

THEORY-

Here is a program for BCD to 7-segment display decoder. The module takes 4 bit BCD as input
and outputs 7 bit decoded output for driving the display unit. A seven segment display can be used to
display decimal digits. They have LED or LCD elements which becomes active when the input is zero.
The figure shows how different digits are displayed:

A
BO BCD to 7- B
Bl Segment o
B2 A
Display D
B3 e E
Decoder
G

BCD to 7 segment display Decoder Truth Table:

B3 B2 B1 BO ABCDEFG
0000 0000001
0001 1001111
0010 0010010
0011 0000110
0100 1001100
0101 0100100
0110 0100000
0111 0001111
1000 0000000
1001 0000100

PROCEDURE:
 New project and type the project name and check the top level source type as HDL.

‘Enter the device properties and click Next.

- Click New Source and Select the Verilog Module and then give the file name.
‘Give the Input and Output port names and click finish.

‘Type the program and save it.

‘Double click the synthesize XST and check syntax.

-Simulate the waveform by behavioral simulation.

PROGRAM:

VHDL PROGRAM:

library IEEE;

use I[EEE.STD_LOGIC_1164.ALL;

use I[EEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SEVEN is
port (
clk : in std_logic;
bcd : in std_logic_vector(3 downto 0); --BCD input
segment? : out std_logic_vector(6 downto 0) -- 7 bit decoded output.
);

end SEVEN;
--'a’ corresponds to MSB of segment7 and g corresponds to LSB of segment?7.
architecture Behavioral of SEVEN is

begin

process (clk,bcd)

BEGIN

if (clk'event and clk="1") then

case bcd is

when "0000"=> segment7 <="0000001"; --'1

when "0001"=> segment7 <="1001111"; --'1

when "0010"=> segment7 <="0010010"; --'2

when "0011"=> segment7 <="0000110"; --'3'
--'4
--'5
-'6

when "0100"=> segment7 <="1001100"; --'
when "0101"=> segment7 <="0100100";
when "0110"=> segment7 <="0100000";
when "0111"=> segment7 <="0001111"; --'7"

when "1000"=> segment7 <="0000000"; --'8'

when "1001"=> segment7 <="0000100"; --'9'

--nothing is displayed when a number more than 9 is given as input.
when others=> segment7 <="1111111";

end case;

end if;

end process;

end Behavioral;

TEST BENCH PROGRAM:
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

ENTITY SEVEN_TB IS
END SEVEN_TB;

ARCHITECTURE behavior OF SEVEN_TB IS
signal clk : std_logic :="0";
signal bed : std_logic_vector(3 downto 0) := (others =>"'0");
signal segment?7 : std_logic_vector(6 downto 0);
constant clk_period : time := 1 ns;
BEGIN
uut: entity work.SEVEN PORT MAP (clk,bcd,segment7);
clk_process :process
begin
clk <="0"
wait for clk_period/2;
clk <="1";
wait for clk_period/2;
end process;
stim_proc: process
begin
foriin 0to 9 loop
bed <= conv_std_logic_vector(i,4);
wait for 2 ns;
end loop;
end process;

END;
CONCLUSION:

AIM OF THE EXPERIMENT-
Develop a VHDL test bench code for testing 4-bit binary counter.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software

THEORY-

The external clock pulses (pulses to be counted) are fed directly to each of the J-
K flipflop in the counter chain and that both the] and K inputs are all tied together in
toggle mode, but only in the first flip-flop, flip-flop FFA (LSB) are they connected HIGH,
logic “1” allowing the flip-flop to toggle on every clock pulse. Then the synchronous

counter follows a predetermined sequence of states in response to the common clock
signal, advancing one state for each pulse.

The] and K inputs of flip-flop FFB are connected directly to the output Qa of
flip-flop FFA, but the]and Kinputs of flip-flops FFC and FFD are driven from
separate AND gates which are also supplied with signals from the input and output of
the previous stage. These additional AND gates generate the required logic for the JK
inputs of the next stage.

If we enable each JK flip-flop to toggle based on whether or not all preceding
flip-flop outputs (Q) are “HIGH” we can obtain the same counting sequence as with the
asynchronous circuit but without the ripple effect, since each flip-flop in this circuit
will be clocked at exactly the same time.

Then as there is no inherent propagation delay in synchronous counters,
because all the counter stages are triggered in parallel at the same time, the maximum
operating frequency of this type of frequency counter is much higher than that for a
similar asynchronous counter circuit.

(Logic 1)
A
FFA FFB
— J QA] J QE-
CLK D CLK
K Qa K Qs K Qe K Qo
1
o
Clock Pulse

PROCEDURE:
- New project and type the project name and check the top level source type as HDL.

-Enter the device properties and click Next.

- Click New Source and Select the Verilog Module and then give the file name.
-Give the Input and Output port names and click finish.

‘Type the program and save it.

‘Double click the synthesize XST and check syntax.

-Simulate the waveform by behavioral simulation.

PROGRAM:

VHDL PROGRAM:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity UP_COUNTER is
Port (clk: in std_logic; -- clock input
reset: in std_logic; -- reset input
counter: out std_logic_vector(3 downto 0) -- output 4-bit counter
);
end UP_COUNTER,;

architecture Behavioral of UP_COUNTER is
signal counter_up: std_logic_vector(3 downto 0);
begin
-- up counter
process(clk)
begin
if(rising_edge(clk)) then
if(reset="1") then
counter_up <=x"0";
else
counter_up <= counter_up +x"1";
end if;
end if;
end process;
counter <= counter_up;

end Behavioral;

TEST BENCH PROGRAM:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
entity tb_counters is

end tb_counters;

architecture Behavioral of tb_counters is

component UP_COUNTER
Port (clk: in std_logic; -- clock input
reset: in std_logic; -- reset input
counter: out std_logic_vector(3 downto 0) -- output 4-bit counter
);
end component;
signal reset,clk: std_logic;
signal counter:std_logic_vector(3 downto 0);

begin
dut: UP_COUNTER port map (clk => clk, reset=>reset, counter => counter);
clock_process :process

begin
clk <=0
wait for 10 ns;
clk<="1"

wait for 10 ns;
end process;

stim_proc: process
begin
reset <="1";

wait for 20 ns;
reset <="'0";
wait;

end process;

end Behavioral;

CONCLUSION:

AIM OF THE EXPERIMENT-
Develop a VHDL test bench code for testing simple gates.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software

THEORY-
AND GATE-

The AND gate is an electronic circuit that gives a high output (1) only if all its inputs
are high. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this
dot is sometimes omitted i.e. AB.

Z Input AND gate

A& | B A B
0| o 0
A —) apl O | 1 0
B 1 | 0 0
AND 1 1 1

OR Gate:

The OR gate is an electronic circuit that gives a high output (1) if one or more of its
inputs are high. A plus (+) is used to show the OR operation.

2 Input OR gate
A B A+B
1] 0 a
A . 0 1 1
F) oM o 1
OR 1 1 1
NAND GATE:

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The
outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND
gate with a small circle on the output. The small circle represents inversion.

2 Input NAND gate
A, B o=
A]] 1
o >:>— AB[1 1
1] 1
NAND 1 1 0
NOR GATE:

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs

of all NOR gates are low if any of the inputs are high.

The symbol is an OR gate with a small circle on the output. The small circle represents

inversion.

Z Input NOR gate

A+B

A _
| WD

_'..A.|:||:|:]:=.

NOR

—=|O|—= 3|

())

EXOR GATE:
The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both,
of its two inputs are high. An encircled plus sign () is used to show the EXOR operation.

2 Input EXOR gate
A, B = =
0 Q0 0
A 0 1 1
s T

PROCEDURE:
 New project and type the project name and check the top level source type as HDL.

‘Enter the device properties and click Next.

- Click New Source and Select the Verilog Module and then give the file name.
-Give the Input and Output port names and click finish.

‘Type the program and save it.

‘Double click the synthesize XST and check syntax.

-Simulate the waveform by behavioral simulation.

PROGRAM:
VHDL PROGRAM:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
entity gates is
Port (a,b:in STD_LOGIC;

p,q.r,s,t:out STD_LOGIC);

end gates;

architecture Behavioral of gates is

begin

p<=aand b;

g<=aorb;

r<=anand b;

s<=anor b;

t<=axorb;

end Behavioral;
TEST BENCH PROGRAM:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY gates_tb IS
END gates_tb;
ARCHITECTURE behavior OF gates_tb IS
COMPONENT gates
PORT(
a:IN std_logic;
b :IN std_logic;
p: OUT std_logic;
q: OUT std_logic;
r: OUT std_logic;
s: OUT std_logic;
t: OUT std_logic
);
END COMPONENT;
signal a : std_logic :='0";
signal b : std_logic :="'0";
signal p : std_logic;
signal q : std_logic;
signal r : std_logic;
signal s : std_logic;
signal t : std_logic;
BEGIN
uut: gates PORT MAP (
a=>a,
b=>Db,
p=>p,
q=>q

);
stim_proc: process
begin
wait for 20 ns;
a<="0"
b<="0";
wait for 20 ns;
a<="'0"
b<="1"
wait for 20 ns;
a<="1"
b<="0";
wait for 20 ns;
end process;
END;
CONCLUSION:

AIM OF THE EXPERIMENT-

Develop a VHDL test bench code & implement of FPGA kit for Multiplexer and De-
Multiplexer.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software
3. FPGAKIT

THEORY-

Multiplexer-

4x1 Multiplexer has four data inputs I3, I2, I1 & Io, two selection lines s1 &
so and one output Y.

Ip —> 4x1

I; ——>{ Multiplexer

]

51 SO

One of these 4 inputs will be connected to the output based on the
combination of inputs present at these two selection lines.

Truth Table-
Selection Lines Output
S1 So Y
0 0 Io
0 1 1
1 0 I2
1 1 I3

From Truth table, we can directly write the Boolean function for output, Y as
Y=S1'S0'10+S1'S011+S1S0'12+S1S013
DE- MULTIPLEXER-

1x4 De-Multiplexer has one input I, two selection lines, s1 & so and four outputs Y3,
Y2 Y1 &Yo.

1x4
I »| De-Multiplexer

(I

S1 So

The single input ‘I’ will be connected to one of the four outputs, Y3 to Yo based on the
values of selection lines s1 & s0.

Truth Table-
Selection Inputs Outputs
S1 So Ys Y2 Y1 Yo
0 0 0 0 0 I
0 1 0 0 I 0
1 0 0 I 0 0
1 1 I 0 0 0

From the above Truth table, we can directly write the Boolean functions for each
output as

Y3=s1s0I

Y2=s1s0'
Y1=s1's0I
Y0=s1's0'l

PROCEDURE:
- New project and type the project name and check the top level source type as HDL

Enter the device properties and click Next

- Click New Source and Select the Verilog Module and then give the file name
‘Give the Input and Output port names and click finish.

‘Type the Verilog program and save it

‘Double click the synthesize XST and check syntax

‘Simulate the waveform by behavioral simulation

- For implementation Select User constraints and give input and output port pin
number

-Click Implement design for Translate, map and place & route
-Generate .bit file using programming file

‘Implement in FPGA through parallel-JTAG cable

-Check the behavior of design in FPGA by giving inputs

PROGRAM:

VHDL Program:
4:1 MULTIPLEXER

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Mux is
Port (10, I1, 12,13,S0,S1 : in STD_LOGIC;
Y : out STD_LOGIC);
end Mux;
architecture Behavioral of Mux is
begin

Y<=((Not S0) and (NOT S1) and I0) or ((not SO and S1 and I1) or (SO and (not S1)
and 12) or (SO and S1 and I3);

end Behavioral;

TEST BENCH PROGRAM:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY Mux_TB IS

END Mux_TB;

ARCHITECTURE behavior OF Mux _TB IS

COMPONENT Mux

PORT(
10 : IN std_logic;
[1:IN std_logic;
[2 :IN std_logic;
[3:IN std_logic;
SO : IN std_logic;
S1:IN std_logic;
Y : OUT std_logic
);

END COMPONENT;

signal 10 : std_logic :='0";

signal I1 : std_logic :="'0";

)

signal 12 : std_logic :="0";

)

signal I3 : std_logic :="'0";
signal SO : std_logic :="'0";
signal S1 : std_logic :='0";
signal Y : std_logic;
BEGIN
uut: Mux PORT MAP (
10 => 10,
11=>1I1,
12 =>12,
13 =>13,
S0 => S0,
S1=>51,
Y=>Y
);

stim_proc: process

begin

[10<="0"

[1<="1"

[2<="0";

[3<="1";

S0<="0";

S1<='0";

wait for 100ns;
S0<="0";
S1<="1"
wait for 100ns;
SO0<="1";
S1<='0"
wait for 100ns;
S0<="1%
S1<="1%
wait for 100ns;
wait;
end process;
END;

DE-MULTIPLEXER
VHDL Program:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
entity Demux is
Port (Y0,Y1,Y2,Y3 : out STD_LOGIC;
[,s0,s1:in STD_LOGIC);
end Demux;
architecture Behavioral of Demux is

begin

Y0<= (not s0) and (nots1) and [;
Y1<=(nots0) and sl and [;
Y2<=s0 and (nots1) and I;
Y3<=s0and s1 and I;

end Behavioral;

Test Bench Program:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY Demux_TB IS
END Demux_TB;
ARCHITECTURE behavior OF Demux_TB IS
COMPONENT Demux
PORT(
Y0 : OUT std_logic;
Y1:0UT std_logic;
Y2 :0UT std_logic;
Y3:0UT std_logic;
[:IN std_logic;
SO : IN std_logic;
S1:IN std_logic
);
END COMPONENT;

signal I : std_logic:="0";

signal s0 :
signal s1:
signal YO :
signal Y1 :
signal Y2 :
signal Y3 :

std_logic :
std_logic :
std_logic;
std_logic;
std_logic;

std_logic;

BEGIN
uut: Demux PORT MAP (
YO0 =>YO0,
Y1=>Y1,
Y2=>Y2,
Y3 =>Y3,
[=>],
S0 =>s0,
S1=>s1
);
stim_proc: process
begin
[<="1";
S0<="0";
S1<="0";
wait for 100ns;
sO0<="0";
sl<="1"
wait for 100ns;
sO0<="1";
sl<="0";
wait for 100ns;
sO0<="1";
sl<="1"
wait for 100ns;
wait;
end process;
END;
CONCLUSION:

AIM OF THE EXPERIMENT-
Develop a VHDL test bench & implement of FPGA kit for Encoder and Decoder.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software
3. FPGAKIT

THEORY-

ENCODER-

An encoder is a combinational logic circuit that takes in multiple inputs, encodes them,
and outputs an encoded version with fewer bits. A 4:2 encoder has four input ports
and two output ports.

4 7 Encoder using galas

o o

Y0 =A'BC'D’ + AB'C'D’ = C’D'(fl & B)
Y1 - A'B'CD' + ABJCJDJ — B,D'("il ::::: (_‘)
Truth table of a 4:2 encoder

DECODER-

A decoder is a combinational logic circuit that does the opposite job of an encoder. It
takes in a coded binary input and decodes it to give a higher number of outputs. 2:4
decoder has two input ports and four output ports.

ik

Truth table for a 2:4 decoder

il ld
N
Nl
il S 1

CIEE]=]E]
N WH

YO=A'B
Y1=A'B

Y2 = AB’
Y3=AB
PROCEDURE:

- New project and type the project name and check the top level source type as HDL
-Enter the device properties and click Next

* Click New Source and Select the Verilog Module and then give the file name

-Give the Input and Output port names and click finish.

‘Type the Verilog program and save it

‘Double click the synthesize XST and check syntax

‘Simulate the waveform by behavioral simulation

- For implementation Select User constraints and give input and output port pin
number

‘Click Implement design for Translate, map and place & route

-Generate .bit file using programming file
‘Implement in FPGA through parallel-JTAG cable
‘Check the behavior of design in FPGA by giving inputs

PROGRAM:
ENCODER-

VHDL Program:
Library IEEE;
Use IEEE.STD_LOGIC_1164.ALL;
Use IEEE.STD_LOGIC_ARITH.ALL;
Use IEEE.STD_LOGIC_UNSIGNED.ALL;
Entity ENCODER_SOURCE is

Port (A, B, C, D: in STD_LOGIC;

Y0, Y1: out STD_LOGIC);

End ENCODER_SOURCE;
Architecture dataflow of ENCODER_SOURCE is

Begin

Y0 <= ((not C) and (not D)) and (A xor B);
Y1 <= ((not B) and (not D)) and (A xor C);
End dataflow;

TEST BENCH PROGRAM:

Library IEEE;

Use IEEE.STD_LOGIC_1164.ALL;

Use IEEE.STD_LOGIC_ARITH.ALL;

Use IEEE.STD_LOGIC_UNSIGNED.ALL;
Entity encoder_dataflow_tb is

End entity;

Architecture tb of encoder_dataflow_tb is
Component ENCODER_SOURCE is
Port (A, B, C, D: in STD_LOGIC;

YO0, Y1: out STD_LOGIC);

End component;

Signal A, B, C, D, YO, Y1: STD_LOGIC;
Begin

uut: ENCODER_SOURCE port map(
A=>A B=>B,

C=>C,D=>D,

Y0 =>Y0,Y1=>Y1);

stim: process

begin
A<="0"

B <="0%
C<='0";
D<="1%

wait for 20 ns;
A<="0"

B <="0%
C<="14,
D<="'0"

wait for 20 ns;
A<="0%
B<="1"
C<='0";
D<="0"

wait for 20 ns;
A<="1"
B<="0%
C<='0";
D<="0"

wait for 20 ns;
wait;

end process;
end tb;

DECODER
VHDL Program:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity DECODER_SOURCE is
Port (AB:in STD_LOGIC;
Y3,Y2,Y1,Y0 : out STD_LOGIC);
end DECODER_SOURCE;

architecture dataflow of DECODER_SOURCE is
begin

Y0 <= ((not A)and(not B));

Y1 <= ((not A) and B);

Y2 <= (A and (not B));
Y3 <= (A and B);

end dataflow;

Test Bench Program:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use I[EEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity decoder_tb is
end entity;

architecture tb of decoder_tb is
component DECODER_SOURCE is
Port (AB:in STD_LOGIC;
Y3,Y2,Y1,Y0 : out STD_LOGIC);
end component;

signal A, B,Y3,Y2,Y1, YO : STD_LOGIC;
begin

uut: DECODER_SOURCE port map(
A=>A, B=>B,

Y0 =>Y0,Y1=>Y1,
Y2=>Y2,Y3=>Y3);

stim: process
begin

A<="0"
B<="0";
wait for 20 ns;

A<="0"
B<="1%
wait for 20 ns;

A<="1"
B<='0";
wait for 20 ns;

A<="1",
B<="1}
wait for 20 ns;

wait;

end process;

end tb;

CONCLUSION:
VLSI DESIGN USING VHDL:

AIM OF THE EXPERIMENT-
Design and implementation of Half Adder and Full Adder.
EQUIPMENT REQUIRED:

1. PC
2. XILINX ISE software

3. FPGAKIT

THEORY-

Half Adder-

Half adder is a combinational arithmetic circuit that adds two numbers and produces
a sum bit (S) and carry bit (C) as the output. If A and B are the input bits, then sum bit
(S) is the X-OR of A and B and the carry bit (C) will be the AND of A and B.

Inputs Cutputs
A B 5
0] o o
1] 1 O
O 1 1 o
1 1 o 1

Truth table
Full Adder-

A — —> S
1 bit
half adder
B — =
Schematic

Realization

The full adder is a three-input and two output combinational circuit.

A

B

Full Adder

Cin4T

Sum s’

Carry ‘c.’

B —D)— s
Cin —L
AB
ACin — Co =AB + ACin+ BCin
- [——
BCIR
Inputs Output
A B Cin S Co
(8] o o o O
o (8] 1 i 0O
(0] 1 o i1 O
o 1 1 o 1
1 (8] o i 0O
1 o 1 0O 1
x S 1 o o 1
5 8 1 [l > ¥ 3= =4
PROCEDURE:

- New project and type the project name and check the top level source type as HDL
-Enter the device properties and click Next

- Click New Source and Select the Verilog Module and then give the file name

-Give the Input and Output port names and click finish.

‘Type the Verilog program and save it

-Double click the synthesize XST and check syntax

-Simulate the waveform by behavioral simulation

- For implementation Select User constraints and give input and output port pin
number

-Click Implement design for Translate, map and place & route
‘Generate .bit file using programming file

‘Implement in FPGA through parallel-JTAG cable

:Check the behavior of design in FPGA by giving inputs

PROGRAM:
HALF ADDER
VHDL Program:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Half_Adder is

Port (A,B:in STD_LOGIC;

S, C:out STD_LOGIC);

end Half_Adder;
architecture Behavioral of Half_Adder is
begin
S<= A xor B;
C<=A and B;
end Behavioral;

FULL ADDER

VHDL Program:
library IEEE;

use I[EEE.STD_LOGIC_1164.ALL;
entity Full_Adder is

Port (A,B,C;, : in STD_LOGIC;

C,, S : out STD_LOGIC);

end Full_Adder;
architecture Behavioral of Full_Adder is
begin
S<= A xor B xor Cjy,;
Co<= (A and B)or (B and C;,,)or (C;, and A);
end Behavioral;

CONCLUSION:

AIM OF THE EXPERIMENT-
Design and implementation of D flip flop.

EQUIPMENT REQUIRED:

1. PC

2. XILINX ISE software
THEORY:

Latch is an electronic device that can be used to store one bit of information.

The D latch is used to capture, or 'latch’ the logic level which is present on the Data line
when the clock input is high.

If the data on the D line changes state while the clock pulse is high, then the output, Q,
follows the input, D. When the CLK input falls to logic 0, the last state of the D input is
trapped and held in the latch.

D

Q

Q

Y
\
)y —

CLK

PROCEDURE:

- New project and type the project name and check the top level source type as HDL
-Enter the device properties and click Next

- Click New Source and Select the Verilog Module and then give the file name

-Give the Input and Output port names and click finish.

‘Type the Verilog program and save it

‘Double click the synthesize XST and check syntax

-Simulate the waveform by behavioral simulation

- For implementation Select User constraints and give input and output port pin
number

‘Click Implement design for Translate, map and place & route
-Generate .bit file using programming file

‘Implement in FPGA through parallel-JTAG cable

‘Check the behavior of design in FPGA by giving inputs

PROGRAM:

VHDL Program:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
entity D_flipflop is
Port (D,CLK: in STD_LOGIC;
g,gbar : inout STD_LOGIC);
end D_flipflop;
architecture Behavioral of D_flipflop is
signal d1, d2:STD_LOGIC;
begin
d1<=D nand CLK;
d2<= (not D) nand CLK;
q<=d1 nand gbar;
gbar<=d2 nand q;
end Behavioral;

CONCLUSION:

EMBEDDED SYSTEM-
AIM OF THE EXPERIMENT:

Write a simple program with two separate LED blinking tasks.
EQUIPMENTS REQUIRED:

» Nvis 5004B board

» Adapter 5volt/1Amp

» USB Cable
THEORY:

» LED is asemiconductor device used in many electronic devices, mostly used for
indication purposes. It is used widely as indicator during test for checking the
validity of results at different stages.

» Itisvery cheap and easily available in variety of shape, color and size. The LEDs
are also used in designing of message display boards and traffic control signal
lights etc.

PROCEDURE:

>

>

Connect the USB cable to USB port of your PC and UARTO (B Type USB)
port of the board (in PC interface & ISP section) provided on the board.

Change the position of Run/ISP switch placed in” PC Interface & ISP Section”
block on the ISP mode.

» Turn ON switch no 1, 2 placed in” 12C & SPI” block.

» Connect the power cable to the board and switch ‘ON’ the power switch.

A7

>
>

Start the Philips flash utility (available in the all programs on the Start menu of
Windows O0S: Start menu/All programs/Philips semiconductor/Flash
utility/Launch LPC210x_ISP.exe.) and select the appropriate port settings (use
baud rate 9600).

Program” Blinky Taskhex” (CD-drive\ RTOS Program)\1.Blinky\ Blinky
Task.hex).

Switch ‘OFF’ the power supply and change the position of Run/ISP switch
placed in” PC Interface & ISP Section” block on the RUN mode.

Put all the switches provided in the ‘LED Interface’ block in the ON position.
Switch ‘On’ the supply, then press reset switch.

Observe simultaneously glowing of two LED’s.

PROGRAM:

#include <LPC214x.H>

/***

*

Delay

* Description : This function provide Delay in Mili Sec.

**/

void MSdelay(unsigned int rTime)

{

unsigned int i,j;
for(i=0;i<=rTime;i++)

for(j=0;j<4867;j++);

/***

Sksk sk sk ok sk sk sk ok sksk sk sk sk sk sk sk sk sk
* Main:

* Description : This function used to interface 8 LEDs.

Skak ok sk sk ok skook ok ok skook sk sk sk sk sk sk sk ok sk sk sk skeosk sk sk skosk sk sk sk sksk skek sk skeskek sk sk sk sk sk sksk skek sk sk skeok sk sk sk sk sk sk sk sk sk sksk sk sk sk sk skosk sk sk sk sksk sk sk sk sk skok skk sk

******************/

int main(void)

{

[I01DIR = 0x00FF0000; /* Define Port1 pin P1.16 to
P1.23 as output */

while (1)
{
I01SET = 0x00FF0000; /* Glow All LEDs */
MSdelay (100); /* Delay */
[I01CLR = 0x00FF0000;
MSdelay (100); /* Delay */

}
CONCLUSION:

AIM OF THE EXPERIMENT:

To interface a stepper motor and control the speed of rotation by implementing RTOS delay
functions.

EQUIPMENTS REQUIRED:
> Nvis 5004B board
> Mains cord

» Serial/USB Cable.
THEORY:

Stepper Motor:

» A step motor can be viewed as a synchronous DC motor with the number of poles (on
both rotor and stator) increased, taking care that they have no common
denominator. Additionally, soft magnetic material with many teeth on the rotor and
stator cheaply multiplies the number of poles (reluctance motor).

» Modern steppers are of hybrid design, having both permanent magnets and soft iron
cores.

» A stepper motor is a brushless, synchronous electric motor that can divide a full
rotation into a large number of steps, for example, 200 steps. When commutated
electronically, the motor's position can be controlled precisely, without any feedback
mechanism (see open loop control).

» A stepper motor's design is virtually identical to that of alow-speed synchronous AC
motor. In that application, the motor is driven with two phase AC, one phase usually
derived through a phase shifting capacitor. Another similar motor is the switched
reluctance motor, which is a very large stepping motor with a reduced pole count,
and generally closed-loop commutated.

#include <LPC214x.H>
/***
* Delay

* Description : This function provide Delay in Mili Sec.
**/

void MSdelay(unsigned int rTime)
{

unsigned int i,j;
for(i=0;i<=rTime;i++)
for(j=0;j<1275;j++);

}

/**
skskskesk skoskskskesk skok sk skksk sk

* Main:

* Description : This function used to interface steper motor

Skeskskesk skeosk sksk sk skokesk sk skok skeskosk skok sk skosk sk sk sk skok sk skosk sk sk sk skoke sk skeskok skeskosk skok skesk skokeskesk skokeskeskosk skskesk skkesk skeskosk sk sk skeosksk sk skok sk sk sk skokesk sksk sk sk sk sk sk sk

***************/

int main(void)

{

IO0DIR = 0x001F0000;
IO0SET = 0x00010000;

while (1)
{
[IOOSET = 0x00020000;
MSdelay(150);
IO0CLR = 0x00020000;

[IOOSET = 0x00040000;
MSdelay(150);
IO0CLR = 0x00040000;

[IO0SET = 0x00080000;
MSdelay(150);
IO0CLR = 0x00080000;

[IO0SET = 0x00100000;
MSdelay(150);
IO0OCLR = 0x00100000;

}
}

/***

END

**/

PROCEDURE:

» Connect the USB cable to USB port of your PC and UARTO (B Type USB)port of the
board (in PC interface & ISP section) provided on the board.

» Change the position of Run/ISP switch placed in” PC Interface & ISP Section”block on the
ISP mode.

» Turn ON switch no 1, 2 placed in” 12C & SPI” block.

» Connect the power cable to the board and switch ‘ON’ the power switch.

» Start the Philips flash utility (available in the all programs on the Start menu of Windows
0S: Start menu/All programs/Philips semiconductor/Flash utility/Launch
LPC210x_ISP.exe.) and select the appropriate port settings (use baud rate 9600).

» Program” RTO_ Stepper Motor.hex” (CD-drive\ RTOS Program\5. Stepper Motor\ RTO_
Stepper Motor.hex).

» Switch ‘OFF the power supply and change the position of Run/ISP switch placed in” PC
Interface & ISP Section” block on the RUN mode.

» Put1to 5 switches provided in the ‘Motor drive’ block in the ON position.

» Switch ‘On’ the supply, then press reset switch.

» On pressing reset, stepper motor starts to rotate.

CONCLUSION:

