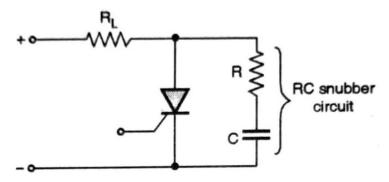
PNS School of Engineering & Technology

Nishamani Vihar, Marshaghai, Kendrapara Internal Assessment Examination-2022(5th Semester)

Subject: Th-5 -Power Electroncs & PLC Branch: Electrical & ETC Engineering

Time: $1\frac{1}{2}$ Hours F.M.: 20

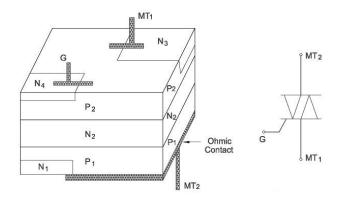
- 1. Answer the following questions (any Five) . [2 x 5]
 - (a) Define latching current.
 - (b) What is $\frac{dv}{dt}$ triggering of an SCR?
 - (c) State delay time.
 - (d) Define snubber circuit.
 - (e) What is phase angle in converter?
 - (f) What is chopper?
 - (g) What do you mean by duty cycle?
- 2. Answer the following questions. (any Two) [5 x 2]
 - (a) Explain the coustmetion of TRIAC with layer diagram.
 - (b) Explain the operation of step up chopper.
 - (c) Describe the operation of single phase full wave bridge converter with R-L load.


ANSWER

- **1(a)** Latching current It is the minimum value of anode Current which it must attain during turn-on process to maintain conduction when gate signal is removed.
- $1(b) \frac{dV}{dt}$ Triggering With forward voltage across the anode and cathode of an SCR, the two outer junctions J_1 and J_3 are forward biased, but inner junction J_2 is reversed bias. This reverse biased function J_2 has the characteristic of a capacitor due to charges existing across the junction. If forward voltage is suddenly applied, a charging current through junction capacitance C_J , may turn on the SCR. Charging current

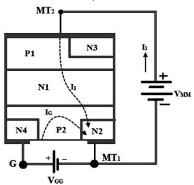
$$I_C = \frac{dQ}{dt} = \frac{dC_J V_a}{dt} = C_J \frac{dV_a}{dt}$$

Therefore, if the rise of the forward voltage is high, the charging current Ic would be more.

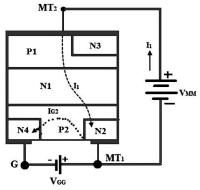

- 1(c) Delay Time (t_d) The delay time t_d is the time interval between the instant at which the gate current reaches $0.9I_g$ and the instant at which anode current reaches $0.1I_a$. The delay time may also be defined as time during which anode voltage from V_a to $0.9\ V_a$.
- **1(d) Snubber circuit -** A snubber circuit basically consists of a series connected resistor and capacitor placed in shunt with an SCR.

- **1(e)** Phase angle is the time interval between the instant the SCR is forward biased and the instant gate pulse is given to turn ON the SCR.
- **1(f)** A chopper is a static device (or switch) used to obtain variable DC voltage from a source of constant DC voltage. Therefore, chopper may be thought of as DC equivalent of an AC transformer, since they behave is an identical manner
 - **1(g)** Duty cycle It is the ratio of turn ON time to toal time . It is denoted by $\boldsymbol{\alpha}$

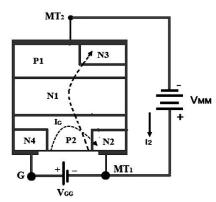
$$\alpha = \frac{T_{ON}}{T} = Duty cycle$$


2(a) TRIAC - TRIAC is a four layer, six doped region and a three terminal device. Gate terminal is connected to both N_3 and P_2 so that gate triggers the device when both positive and negative voltage is applied. In the Same way MT_1 is also connected to N_2 and P_2 regions and MT_2 is connected to the P_1 and N_4 regions. So the polarity between the terminals decides the direction of the current through the layers.

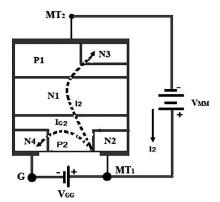
Working of TRIAC:


There are four possible combinations of the potentials applied to the terminals.

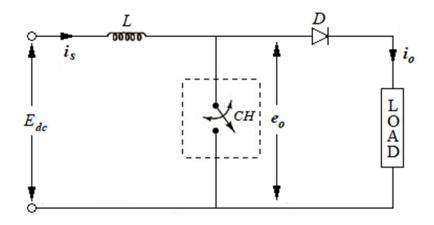
Mode1: MT₂ is positive and gate terminal is positive:


When the MT_2 terminal is made positive with respect to the terminal MT_1 and when positive voltage is applied at the gate terminal the path of the current flow from MT_2 to MT_1 will be P_1 - N_1 - P_2 - N_2 . The junction between P_1N_1 and P_2N_2 are forward biased and junction between N_1P_2 is reverse biased and breakdown occurs at this junction.

Mode2: MT₂ is positive and gate terminal is negative:


When the MT_2 terminal is made positive with respect to the terminal MT_1 and when negative voltage is applied at the gate terminal, initially the path of the current flow from MT_2 to MT_1 will be $P_1-N_1-P_2-N_3$. When the voltage applied at the MT_2 terminal is further increased the junction P_2N_2 is forward biased and the path of the current flow will be $P_1-N_1-P_2-N_2$. More Gate current is needed to turn the TRIAC.

Mode3: MT₂ is negative and gate terminal is positive:


When the MT_2 terminal is made positive with respect to the terminal MT_1 and when negative voltage is applied at the gate terminal the path of the current flow from MT_2 to MT_1 will be $P_2N_1P_1$. The Junctions P_2N_1 and P_1N_4 are forward biased and the junction N_1P_1 is reverse biased. So in this mode, TRIAC work in a negative biased region.

Mode4: MT₂ is negative and gate terminal is negative:

When the MT_2 terminal is made negative with respect to the terminal MT_1 and when negative voltage is applied at the gate terminal the path of the current flow from MT_2 to MT_1 will be $P_2N_1P_1N_4$.

2(b) Working principle of step-up CHOPPER:

When the chopper is ON, the inductor L is connected to the supply and stores energy during on period T_{ON} . When the chopper is made OFF, the inductor stored energy as well as Source E_{DC} supply the load. Hence the load voltage becomes

$$E_{O} = E_{DC} + L \frac{dI_{DC}}{dt}$$

During the time T_{ON} when chopper is ON, the energy input to the inductor from the source is given by $W_I = E_{DC} I_{DC} T_{ON}$

During the time T_{OFF} when chopper is OFF, energy released by the inductor to the load is given by

$$W_O = (E_O - E_{DC}) I_{DC} T_{OFF}$$

Considering the system to be lossless, the above two energies will be equal.

Hence WI = WO

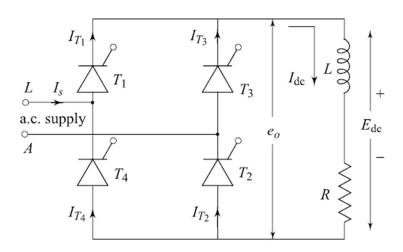
Or
$$E_{DC} I_{DC} T_{ON} = (E_O - E_{DC}) I_{DC} T_{OFF}$$

Or
$$E_{DC} T_{ON} + E_{DC} T_{OFF} = E_{O} T_{OFF}$$

Or
$$E_O = E_{DC} \frac{T_{ON} + T_{OFF}}{T_{ON}}$$

Or
$$E_0 = E_{DC} \frac{T}{T_{OFF}}$$

Or
$$E_0 = E_{DC} \frac{1}{1 - \frac{T_{ON}}{T}}$$


Or
$$E_O = \frac{E_{DC}}{1 - \alpha}$$

Hence the output voltage E_0 will vary in the range $E_{DC} < E_0 < \infty$ for the variation of duty cycle α in the range $0 < \alpha < 1$.

2(c) Opereation of single phase full wave bridge converter with RL load:

During first positive half cycle, SCRs T_1 and T_2 are fired at fining angle α . So the current flows through the path L-T₁-L-R-T₂-N. Supply voltage from this instant appears across output load terminal. At instant π , voltage reverses, however the current is maintained in the same direction which keeps the SCRs T_1 and T_2 conducting and hence the negative supply voltage appears across load terminals.

At an angle π + α , SCRs T_3 and T_4 are fired. With this, the negative line voltage reverse-biases SCRs T_1 and T_2 to commutate. Now the current flows through the path N-T₃-L-R-T₄-L. This continues in every half cycle and we get the output voltage across load.

The average load voltage is

$$E_{DC} = \frac{1}{\pi} \int_{\alpha}^{\pi + \alpha} E_{m} Sin\omega td(\omega t)$$

Or
$$E_{DC} = \frac{E_m}{\pi} [-Cos \omega t]_{\pi}^{\pi + \alpha}$$

Or
$$E_{DC} = \frac{2E_m}{\pi} Cos \alpha$$