PNS SCHOOL OF ENGINEERING & TECHNOLOGY

NISAMANI VIHAR, MARSHAGHAI, KENDRAPARA

DEPARTEMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

1ST INTERNAL ASSESSMENT EXAM QUESTIONS & ANSWER

SUB-DIGITAL ELECTRONICS (TH-3)

PREPARED BY :

ER. ADITYA NARAYAN JENA

LECTURER IN ETC

PNS School of Engineering & Technology

Nishamani Vihar, Marshaghai, Kendrapara Internal Assessment Examination-2022(3rd Semester) Subject : Th-3 -Digital Electronics

Branch : Computer Science & ETC Engineering Time : $1\frac{1}{2}$ Hours F.M. : 20

- 1. Answer all questions
 - (a) What do you mean by base of a number system?
 - (b) Convert (276), into $(___)_{16}$?
 - (c) Find 2's Complement of $(11.01)_2$.
 - (d) Define min term and max term.
 - (e) Draw the gate symbol and truth table of 3 input NAND gate.
- 2. Answer any two questions.

[5 x 2]

[2 x 5]

- (a) State and prove De-Morgan's Theorem.
- (b) Explain the working principle of full Adder with Truth Table and Logic Diagram.

(c) Solve by K-map:

 $F(A,B,C,D) = \Sigma m(1,3,7,11,15) + d(0,2,5)$

1- (a) Base of a number system ÷

The number of digits used in a number system is known as base of that no. system.

For eg; The base of binary no. system is 2, since only 0 & 1 used in Binary number system.

(d) Min term ÷

In SOP expression, the term which contains all the variables in direct or complement form , is known as min term.

Max term÷

In POS expression , the term which contains all the variable in direct or complement form , is known as max term.

Truth table -

Input			Output
Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

2- (a) Demorgan's Theorem ÷

(I) $\overline{X+Y} = \overline{X \cdot Y}$

(II) $\overline{X.Y} = \overline{X} + \overline{Y}$

Where x , y are two logic variables

<u>proof</u>

(i) $\overline{X+Y} = \overline{X}$. \overline{Y}

<u>Truth table ÷</u>

Х	Y	X+Y	X+Y	X	Y	X.Y
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

From truth table $\overline{X+Y} = \overline{X \cdot Y}$ (Proved)

(ii)
$$\overline{X.Y} = \overline{x} + \overline{y}$$

Truth table ÷

Х	Y	X.Y	X.Y	X	Ϋ́	$\overline{X} + \overline{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

From truth table, $\overline{X.Y} = \overline{X} + \overline{Y}$

(Proved)

2 (b)

FULL ADDER ÷

It is a combinational logic circuit which perform the arithimatic addition of only 3 binary bits.

• Here no of inputs = 3 i.e x,y and z; and no of output = 2 i.e s,c

C = Carry

<BD of a full adder>

<u>Truth Table ÷</u>

Input				Output		
х	У	Z		S	С	
0	0	0		0	0	
0	0	1		1	0	
0	1	0		1	0	
0	1	1		0	1	
1	0	0		1	0	
1	0	1		0	1	
1	1	0		0	1	
1	1	1		1	1	

Expression for s ÷

Expression for c÷

C= y z +x z+ y x =x y +y z+ x z

Logic diagram of full odder÷

