PNS SCHOOL OF ENGINEERING AND TECHNOLOGY

NISAMANI VIHAR, MARSHAGHAI, KENDRAPARA

DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

1ST INTERNAL ASSESSMENT EXAM QUSTIONS & ANSWER

SUB- DIGITAL ELECTRONICS AND MICROPROCESSOR (TH-3)

PREPARED BY:

ER.ADITYA NARAYA JENA LECTURER IN ETC

PNS School of Engineering & Technology

Nishamani Vihar, Marshaghai, Kendrapara

Internal Assessment Examination-2022(5th Semester)

Subject: Th-3 -Digital Electronics & Microprocessor

Branch: Electrical Engineering

Time: $1\frac{1}{2}$ Hours

F.M.: 20

1. Answer all questions

 $[2 \times 5]$

- (a) What do you mean Radix of a no system?
- (b) Convert (475)₁₀ into (_____)₂?
- (c) Find XS-3 Code of 897.
- (d) Define Don't Care Condition.
- (e) Draw the gate symbol and truth table of 3 input NOR gate.
- 2. Answer any two questions.

[5 x 2]

- (a) State and prove De-Morgan's Theorem.
- (b) Explain the working principle of full substractor with Truth Table and Logic Diagram.
- (c) Solve by K-map:

 $F(A,B,C,D) = \Sigma m(0,5,6,15) + d(2,3,7,10,11,13)$

1- (a) Radix ÷

The number of digits used in a number system , is called radix of the number system. For eg; binary number system only 0 and 1 are used . so radix is 2.

(b) (478)10;

(d) Don't care condition ÷

The combinations which are never occur in the outputs, is known as don't care condition.

For eg; in decimal no. system (10-15) are don't care conditions.

(e) 3 input NOR gate ÷

<u>Truth table</u> ÷

Input			Output
Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

2-(a) <u>Demorgan's Theorem ÷</u>

(I)
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

(II)
$$\overline{X.Y} = \overline{X + Y}$$

Where \boldsymbol{x} , \boldsymbol{y} are two logic variables

proof

(i)
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

<u>Truth table ÷</u>

Х	Υ	X+Y	X+Y	X	Y	<u>X</u> . <u>Y</u>
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

From truth table $X+Y = \overline{X} \cdot \overline{Y}$

(ii)
$$\overline{X.Y} = \overline{X + Y}$$

<u>Truth table ÷</u>

Х	Υ	X.Y	X.Y	X	Y	X + y
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

From truth table, $\overline{X.Y} = \overline{X} + \overline{Y}$ (Proved)

2- (b) Full subtractor ÷

It is a combinational logic circuit which performs the arithmetic Substraction of 3 binary bits.

Here no of input =3 i.e x, y, z; and no of outputs =2i.e D and B

Where

D = difference

B = borrow

<BD of a full subtractor>

Truth table÷

Inputs			outputs
Х	Υ	Υ	D B
0	0	0	0 0
0	0	1	1 1
0	1	0	1 1
0	1	1	0 1
1	0	0	1 0
1	0	1	0 0
1	1	0	0 0
1	1	1	1 1

Expression for D÷

$$D = \overline{x y}z + \overline{x}y\overline{z} + x\overline{y}\overline{z} + xyz$$

$$=\overline{x}(\overline{y}z+y\overline{z})+x(\overline{y}\overline{z}+yz)$$

Let
$$A = \overline{y} z + y \overline{z}$$

$$\overline{A} = \overline{y} \overline{z} + yz$$

$$D = \overline{X} A + X A$$

$$=X \oplus A$$

$$=X\oplus (\overline{y}\ Z+y\ \overline{Z}\)$$

$$= x \oplus y \oplus z$$

Expression for B÷

χ / γ	/ z 00	01	11	10
0				
1			1	

$$B = \overline{x} z + \overline{x} y + y z$$

Logic diagram of full subtracter ÷

$$D = x \oplus y \oplus z$$

$$B = \overline{x} y + \overline{x} z + y z$$

2 (c) solve by k-map

$$F(A, B, C, D) = \sum_{m(5, 0, 6, 15)+d(2, 3, 7, 10, 11 13)}$$

$$F=BD+\overline{A}C+\overline{A}\overline{B}\overline{D}$$