
Command line Argument:-

 There are 3 command line argument.
1. Single line command
2. Multi line command
3. Java DOC command

1:SINGLE LINE COMMAND:-

 It can be achived by “//”symbol.
 It is used to provide description about the code in a single

line.

EX:- //class declaration

 Class comp {

 }

2: Multi line command :-
 To provide description about the cod more than one line be can use multi line

command .
EX :-/* function party in our collage of P N S college */
Class function{
 Public static void main ()
{
System . out. Println(welcome to party);
}
}

3.JAVA DOC COMMAND:-

 It is used to provides document details about the method or class.
 EX :-/* FUNCTION PATY IN OUR COLLAGE OF P N S SCHOOL OF ENG.&TECH.
 @AUTHOR
 @CLASS TYPE
 @EXEEPTION
 @METHOD
 @//LIBRARY*/

OPERATOR:-

1. Arithmatic operator
2. Conditional operator
3. Logical operator
4. Unary operator
5. Assignment operator
6. Ternary operator
7. Bit wise operator

 1:- Arithmetic operator :-
 It is used to perform arithmetic operation .
 The operation are (+, -,*,/,%) add ,sub multiplication division ,modulus.

 Duotient (“/”) ->division
 Reminder (%) modulus

Class Arithmatic {
 Public static void main (String args [])
 {
 Int a =5;
 Int b=6;
 System . out . print ln(a+b);
 System . out . print ln(“a+b is equal to);
}
}

EX:-
 Class Arithmatic {

 Public static void main(String args[])

 {

 Int a=5;

 Int b=6;

 C =a-b;

 System .out .print ln (a-b);

 System .out .print ln(“a-b is equal to” +c);

 }

}

EX:-

Class Arithmatic {

 Public static void main (String arss[])

 {

 Int a=5;

 Int b=6;

 C=a*b;

System .out .print ln(a*b);

System .out .print ln(“a*b is equal to”+c);

}

}

EX: class arithmetic {

 Public static void main(string args[])

 {

 Int a=5;

 Int b=6;

 C =a/b;

System .out .print ln (a/b);

System .out .print ln(“a/b is equal to”+c);

}

}

EX :-Class Arithmatic {

 Public static void main (String args[])

{

 Int a=5;

 Int b=6;

 C =a%b;

System .out .print ln (a%b);

System .out .print ln(“a%b is equal to” +c)

}

}

EX:-

 Class Arithmatic {

 Int a=6;

 Int b=7;

Public static void main (String artgs [])

 {

 Int c =a+b;

System .out .print ln (“ The sum of two no’s is”+c); //13

Int d =a-b;

System .out .print ln(“The sub of 2 no’s :”+d); //-1

Int e=a*b

System .out .print ln(“The multiplication of 2 no’s:”+e);//42

Int x=1; int y=a/X;

Int y=a%X;

System .out .print ln(“The division of 2no’s :”);

System .out print ln (“ The modulus of 2 no’s :”);//0

}

}

OPERATOR OVER LODEING:-
 Java does not support operator over loading. The only aspect of java ,which comes to

operator over loading is using ‘+’ operator.
 In terms of number , it proforma addition operation ,where ever a string comes into

a picture . it will act as a concatenation operation .

EX:

Class operator {

 Public static void main (String args[])

 {

 Int a =10;

 Int b=20;

 System .out .print ln (a+b);

 String S1= “P N S” ;

 String S2= “college”;

 System .out. print ln (String S1+ “ ”+ String S2);

 Int sum = a+b;

System .out . print ln (“sum:”+sum);

}

}

EX

 a= 50;

int String S1=computer

 int b=10

int b=10

String S2= scinence

System . out .print ln (a + b+ String S1)

a+ String S1+ String S2

b+a +string s1+a+b

String s1+ string S2+(a+b)

o WAP FIND AREA OF CIRCLE ?
Class Circle {
 Public static void main (String args [])
 {
 Float radious =3.0f;
 Float pie =3.141f;
 Float result =pie *r*r;
System .out .print ln (“The area of circle is :”+result);
}
}

o Wap find the area of rectangle ?

Class rectangle {

 Public static void main (String ares[])

 {

 Int l =6;

 Int b=5;

 Int r =l*b;

System .out .print ln (“the area of rectangle is:”+r);

 }

}

CONDITIONAL OPERATOR:-

o Conditional operator return bullean value .
o It is used for comparession or variatation purpose .

(<,>,<=,>=,== ,!=)

o Less than ,greator than ,less than equal to ,greater than equal
to, not equal to).

1) WRP ADDING 2 NO ‘S IN JAVA PROGRAM
Class Arithmatic {
 Public static void main (string args [])
{
 Int x=2;
 Int y=3;
 Int z=x+y;
System .out .print ln(“the sum of x&y is :”+z);
}
}

o/p:the sum of x&y is :5
2) WAP SUB 2NO’S IN JAVA PROGRAM .

Class Arithmatic {
 Public static void main (string args[])
{
 Int x=3;
 Int y=2;
 Int z=x-y;
s.o.p(“the sub of x&y is :”+z);
 }
}

3) WAP MULTI 2 NO’S IN JAVA PROGRATM.
Class Arithmatic {

Public static void main (string args [])

{

 Int x=2;

 Int y=3;

 Int z=x*y;

System .out .print ln (“the multi of x&y is :”+z);

}

 }

Primitive data type & declaration :-

 One primitive data type can declare in java.
 Class & main method(public static void main())
 It can also be declared with in main method i. e (public static void main ())
 It can also declared in with in a used defined or pre-declared function .

Local variable for primitive data type :-

 If a variable & a primitive data type is declared in main method then this
data type or variable called as local variable .

 Similarly global variable .
 If a variable is declared with in class &main method is called as Global variable .

Ex:

Class A{

Int a;

Char c; global variable

String s;

Public static void main (string args [])

{

 Int a1;

 Char c1; local variable

 String s2;

}

}

String :-
Combination of char .is called as string .

 A string is compiled of an 8byte object header (4-byte sync block &a 4 -byte type
decriptor).

 The maximum length of string in java in 0 to 214783647.
 Char :-

Byte -2 byte
Rang-0 to 65535

 How to address memory location ?
 The memory location are addressed from 0 to2^k-1 I.e a memory has 2k

addressable locations . and this the address space of the computer have 2k
addresses.

-:CASTING & TYPE CASTING :-

UP CASTING :-
 The process of creating obj for the sub -class with the help of super class

reference variable is said to be up-casting .
 The up-casting object refer to the method & variable of super class . if the

method is over idied in the sub class then it will takes sub class .
 If it is not overided than it will take super class implementation .

Casting :-

 Casting is a method & process that converts a particular data type in both ways
space manually & automatically .

 The automatic convert perform by a program.
 Narrowing type casting
DOUBLE FLOAT LONG INT SHORT BYTE

 WIDENING

Types of casting :-

I. Narrowing type casting
II. Widening type casting

Type casting :-

 Convert a value from one data type to another data type is called as type casting .

Narrowing type of casting :-

 Converting a higher data type into lower data type one data type is called as
narrowing type of casting.

 It is also known as casting up or explicity convert .

Doble Float Long Int Short Byte

WIDENING TYPE CASTING :-

 Converting a lower data type into a higher one is called as widening type casting
.

 It is also known as casting down or implicity conversion .

Byte Short Int Long Float Double

Ex:-

 Public class casting {

 {

 Public static void main(string args [])

{

Int x=7;

//conversion of integer to long

Int y=x;

//convert long to float;

Int z=y;

s.o.p (“Before conversion int value :”+x);

s. o.p(“After conversion int to long value :”+y);

s.o.p(“after conversion of long to float value :”+z);

}

}

}

O/P:-

 Before conversion ,int value =7

 After conversion in to long value =7

 After conversion of long to float value =7

Control flow :-

What is statement ?

 A single line of code is known as statement &its end with semicolumn(;).

How do use control flow ?

 Executing a single line of code within a minimum space of time is called as
control flow .

How to use loop?

 Executing a same line of code repeatly is known as loop .

Control flow :-

 Control flow describe the order is which the statement will be executing at
run time .

Flow control
Selection statement interative statement transfers statement

1.if 1.while 1.Break

2.if -else 2.do while 2.continue

3.switch 3.for loop 3.return

 4.for eachloop 4.try catch finally

 5.as set

I. If statement :-
 Class loop{
 Public static void main (string arss[])
 {
 Int x=17;
 If (<18)
 System.out .print ln (“I am not a adult”);
 If (x>18)
 System .out .print ln (“I am a adult”);
}
}

1) EXAMPLE OF IF ()
Class mimic {
Public static void main (String args [])
 {
 Int x=6;
 Int (x>10)
System .out .print ln (“ your now going to become a student”);
 If (x<10)
System .out .print ln (“your now a child”);
}}

2. Example of if ()_else

Class flow

{

 Int x=18;

 If (x>18);

{

System .out .print ln(“you are now a Indian citizen”) ;

}

Else

{

System .out .print ln(“you are not a Indian citizen”)

}

}

Example no.3:-

Class flow {

Public static void main (String args[])

{

Boolean b=true ;

If (b=true);

{

System .out .print ln (“your right man”);

}

Else

{

System .out. print ln (“your wrong man”);

}

}

}

Example no .4:-

Class flow

{

Public static void main (String args [])

{

Boolean b=false ;

If (b==false);

{

System .out .print ln(“ your right man”);

}

Else

{

System . out .print ln (“your wrong man”);

}

}

}

Ex :-5 class flow {

 Public static void main (String args []){

 Int b=10;

 If (b==20){

 System .out .print ln(“the no is 20”);

 }

 Else

 }

 System .out .print ln (“the no is 10”);

 }

 }

}

Ex 6:-

class flow {

 public static void main (String args [])

{

String s1= “p n s”;

If (s1=p n s)

{

System .out .print ln (“This is college name”);

}

Else

{

System .out .print ln (“This is not a college name”);

}

}

}

Ex :-6
Class flow {

 Public static void main (String args)

 {

 Char = “p n s”;

 If (ch ==p n s){

System .out .print ln (“This is college name”);

 }

 Else

 }

System .out .print ln (“this is college name”);

}

}}

 -:Even odd number’s EX :-
Class even

{

Public static void main (String args [])

{

 Int x=18;

 If (x%2==0)

{

System .out .print ln (“x is even no”);

}

Else

{

System .out .print ln (“x is a odd no”);

}

}

}

Class odd {

 Public static void main (string args [])

{

 Int x=18;

 If (x%2!=0)

{

System .out .print ln (“x is a even no”);

}

Else

{

System .out .print ln (“ x is a odd no”);

}}}

 -:Switch case statement :-

Syntax :-

 Switch (x)

{

 Case 1:

 Action 1:

 Break ;

 Case 2;

 Action 2;

 Break ;

 Case 3;

 Action 3;

 Break ;

 :

 :

 Case n:

 Action n;

 Break ;

 Default :

 Default action ;

}

 if several option are available then it is never recommended to use if else statement ,

In that case we should use switch case statement .

 The advantages of this approach is readability will be improved.

The valid argument types for switch statement are bite ,short ,integer ,char but this rule is
applicable unit 1.4 version .

But from 1.5 version onwards corresponding wrapper classes & enum types allowed .

1.4 v 1.5v 1.7v
Byte byte
Short short
Int char String
Char Int
 + ,enum
 Colibresses are mandatory.
 Switch case is the only place where colibresses are mandatory .
 Within the switch both case & default are optical.
 Ex :-

Class enum {
 Int x =10;
 Switch (x){
 Print x;
 }
}

 Every statement inside switch should be under some case or default . i.e we can’t
right independent statement inside the switch .

 Every case level should be compile time constant if we are taking one variables as
case level than we will get compile time error .

-:Switch ()EXAMPLE :-
Public class college {

 Int day =6;

Public static void main (String args[])

{

Switch (day){

Case 1:

System .out .print ln (“today is Monday”);

Break ;

Case2:

System .out .print ln (“today is Tuesday”);

Break ;

Case 3:

System .out .print ln (“today is Wednesday”);

Break ;

Case 4:

System .out .print ln (“today is Thursday”);

Break ;

Case5:

System .out .print ln (“today is Friday”);

Break ;

Case6:

System .out .print ln (“today is Saturday”);

Break ;

Case 7;

System .out .print ln (“today is Sunday”);

Break ;

Default :

System .out print ln (“today is on day now”); } } }

Do while ():-

 Syntax :-

Do

{

 Statement

}

While (condition)

Properties :-

 it is an exit check loop .

 do while execution the statement at less one even the condition is returning false.

Ex :-

W A P to print the no from 1 to 100 !!

 Class loop {

Public static void main (String args[])

 {

 Int i=1;

Do

{

System .out .print ln (“print I”);

I++;

}

While (i<=100)

System .out .print ln (“Throw an error”);

}

}

While :-

Syntax :- While condition{

 Statement ;

}

 It is an entry check loop , while loop will always execpect the condition is return
loop.

 It will exicuit all the statement inside the loop until the condition become false .

Ex :-
 Class loop 1

{

 Public static void main (String args [])

 {

 Int i=1;

 While (i<=100)

 {

 System .out .print ln (“print I”);

 I++;

 }

 System . out .print ln (“loop execution end”);

 }

}

 Ex :-

 Class loop

 {

Public static void main (String args [])

 {

 Int i=100;

 While (i<=100)

 {

System .out .print ln (“print I”);

I++;

}

System .out .print ln (“loop execution end”);

} }

for loop:-

 syntax :-

for (intilization ;condition ;increment /decrement);

{

Statement ;

}

Ex :-
Class loop3

{

Public static void main (String args [])

{

 Int i=1;

 For (int I;i<=10;i++);

 {

System .out .print ln (“print I”);

}

 System .out .print ln (“loop executing end”);

}

}

What is class ?

 class is the blue print of program .

 class is use to defind state & behaviour of the program.

 in other-words class contain method ,variable inside it .

Ex :- student ; logic

Syntax of class :-

Class class name

 {

 Variable & method name ;

 }

Object :-
 Object are real time entity provided for the class .
 It is used to access method &variable inside the method .

Syntax for the object :-

Class name .object name =new class name ();

Eg :-

 Class name object name = new class name ();

Student st=new student (); keyword
 construction if cla

 We can create ‘n’ no of object for a single class.
Method :-

 Methods are the collection of the statement which is used to perform some specific
operation.

 Method allows as to reuse the code the inside of refrying or retyping .
 The main ablvantages of method is reusability & code optimization .
 Main method is the building block of the program .
 Hear executing always start from main method .
 If the main method is not defined in the class then during execution we will get

compilation error .
 To defined a method we need to use 6 components:-

1. Access specifier
2. Return type
3. Method name
4. Parameter
5. Paraenthesis /method block (())

(A,b)
6. Return keyword

Syntax:-

Access specifier return keyword method name (parameter)

{

 Return value

}

Access specifier :-

 it is used to define the sequirity & visibility for both methods & variables .

 Types of access specifier :-
i. Privet it is define within class .

ii. Default within same package with folder .
iii. Protected out side package with inheritance .
iv. Public can be used any where .
 Return type :-

 It is mandatory to define return type for method .
 Return type is used to defined what type of value will be return as out from

the metho .
 We can define return type as primitive data type as return type then that

method should written variable or value of the same return type .
Ex :-
 M2()
 {
 Return 10 ;

 }
Ex :-
 Int m1 ()
 {
 Int a=2;
 Return 2/a;

}
 If a method is define with primitive data type as return type then the method should

return object of the same class which is define in the return type .
 When we wand to get a bunch of data as out put we can define the method with non

-primitive data type as return type .
Ex :-
 Test m1 ()
 {
 test t=new test ();
 return t;
 }

 Ex 2:-

 String s1()

{

String s= “college”;

Return s;

}

 If a method is defined as void return type then the method don’t return anything .
 Return keyword is not allowed for void type method .
 Method name :-

 Method name should be uniqucinside the class .
 Duplicate method name are not allowed in java .
 Method name should not start with lower case letter .
 Camel case letter us are allowed .
 Alpha numeric value are allowed .
 Spaces are not allowed in java .

Ex :-
 m1()X

 M1()correct

 $set ()correct

 Void set prior()×

 Voidset-prior ()correct

 1-college()correct

 1-college staff ()×

 Return keyword :-
 Return key word is mandatory for all method depend with return type other

than void
 It should be the last statements inside the method .
 Once return key word has been executed the control will given back to the

place where the method is called .
 Return key word should return type to value which is matching with return

type .
 Types of method .
 There are 2 types of method

i. Static method
ii. Non static method

1. Static method :-
 Any method define with static keyword is said to static method .
 We will get memory first .
 It will get memory in static pool .
 Static method can be access by there ways.

i. Within the same class we can access it directly .
ii. We can access it with the help of class name .

iii. We can access it using object .
2. Non -static method :-

 Any method which is defined without static keyword is said to be non static
method .

 It will get memory after object creation .
 It will get memory in heap area .
 It has multiple copies of memory based on no. of object create .

Ex :- class test
 {
 //static void main m1()
 {
 System .out .print ln (“ static method”);
 }
 Non //void method ()
 {

Static method system .out .print ln (“non static method”);

 }

 Public static void main (string args [])

 {

 //m1();

 Test m1();

 //test t1=new test ();

 {

 T1 .m1();

 T2 . m1();

 }

 }

4. Parameter :-
 Parameter are local variable which as the access within that method only

.
 It should be defined inside the method or signature .

5. Argument :-
 Argument of the data given to parameter .
 It should be match with total number of parameter ,data type parameter

,& sequence of parameter .
Ex :-
 Class method -2
 {
 Int a ;
 Int b;
 // int add (int a,int b)
 {
 Int sum =a+b;
 Return sum;
 }
 //int sum (int a, int b)
 {
 Int sub =a-b;
 Return sub ;
 }
Public static void main (string args [])
 {
Method -2 m2=new method -2();
Int return 1=m2 add (10,20);
System .out .print ln (“add =”+ result 1);
 Int result 2=m2.sub(10,20);
System .out .print ln (“sub=”+result 2);
 }
 }

Ex :-class method -3

 {

 Int a;

 Int b;

Int multiplication (int a, int b)

 {

 Int multiplication =a*b;

 Return multiplication ;

 }

 Int division (int a ,int b)

 {

 Int division =a/b;

 Return division ;

 }

Public static void main (String args [])

 {

 Method _3 m3=new method -3();

 Int return 1= m3.multiplication (10,20);

 System .out .print ln (“multiplication =”+result 1);

 Int result 2=m3.devision (10,20);

 System .out .print ln (“division =”+result 2);

 }

 }

Constructor :-

 Constructor are special type of method which is used to initialize the object .
 The main use construction is to assign the value to the global variable .

Rules of defining construction :-
 Construction name should be same as class name .
 Construction doesn’t have any return type .
 We should not write any business logic inside construction .

How to call constructor :-
 Construction will be invoked during the object creation .

Type of constructor :-
There are two types of constructor .

1. Default constructor
2. User defined construction

Default constructor :-

 It is system generated constructor . which is created by the compiler during compile
type.

 Default constructor will be created only where there is no. constructor is used to
assign default values .

Compilation time :-

 Class Test

 {

 Test ()

 {

 System .out .print ln (“default constructor”);

 }

 Public static void main ()

 {

 Test t =new test ();

 }

 }

Ex :-2

 Class Test {

Int x;

 Public static void main (String args []) {

 System .out .print ln (“print x=20”);

 } }

User defined constructor :-

 The constructor which as created by the developer during coding time is side to be
user define constructor .

 It is also called as parameterise constructor .
 It used to assign user defined value to global variable .

Ex :-
 Public class Demo
 {
 Demo ()
 {
System .out .print ln (“Default constructor”);
 }
 Demo (int a)
 {
System .out .print ln (“one -argument constructor”);
 }
 Demo (int a ,int b)
 {
System .out .print ln (“two argument constructor”);
 Demo (char c)
 {
System .out print ln (“character type argument”);
 }
 Demo (String s)
 {
System .out .print ln (“ string type constructor”);
 }
Public static void main (String args [])
 {
Demo d=new demo ();//default constructor .
Demo d1 =new demo (10);//1-arg constructor .
Demo d2 =new demo(10,20);//2-arg constructor .
Demo d3=demo (‘a’);//character type args constructor .
Demo d4=new demo (“ my college”);//string constructor type constructer .
 }
 }

Ex :-
 Public class student
 {
 Student ()
 {
System .out .print ln (“default constructor”);
 }
 Student (int a)
 {
System .out .print ln (“one argument constructor”);
 }
 Student (int a ,int b)
 {
System .out .print ln (“two argument constructor”);
 }
 Student (Char c)
 {
System .out print ln (“character type argument”);
 }
 Student (string s)
 {
System .out print ln (“ string type constructor”);
 }
Public static void main (String args [])
 {
 Student s =new student ();
 Student s1=new student (10);
 Student s2 =new student

 -:OOPS CONCEPTS & TERMINOLOGY :-
What is oop?

 Java coding is completely dependent on object so ,it is said to be object oriented
programming language .

 Oop is catagorieg into 4 parts .
1. Inheritance
2. Polynerphism
3. Encapsalation
4. Abstraction

1. Inheritance:-
 The process of acquiring the properties from one class to another class is

said to be inheritance .
 To archive inheritance in java we need to use extends keyword .
 The class which given properties to another class is said to be super class .
 It is also called as base class /parent class .
 The class which gates properties from super class in side to be sub class .it is

also called as child class or /derived class.
 The main advantage of inheritance is code reusability .
 Inheritance is also known as relationship .
 When we create object for super class it can access only the super class

method & variable .
 When we create object for sub-class it can access both super class &

sub-class .

EX :-with inheritance

 Class a{

 }

 Void add (){

 }

 Void sub (){

 }

Class b extends a{

 Void mul (){

 }

Class c extends b{

 Void div (){

 }

Void mod (){

 }

 }

}

Class run {

Public static void main (){

A a1=new A();

 a1 =add ();

 a1=sub ();

B b1 =new B();

 b1= mul();

c c1=new c();

 c1= div ();

 c1=mod ();

 c1.mul ();

 c1.sub ();

 c1.add();

 }

 }

}

