

Q.1.

(a) Define Data Abstraction?

Data Abstraction is the property by virtue of which only the essential details are displayed

to the user. The trivial or the non-essentials units are not displayed to the user. Ex: A car is

viewed as a car rather than its individual components.

Data Abstraction may also be defined as the process of identifying only the required

characteristics of an object ignoring the irrelevant details. The properties and behaviours

of an object differentiate it from other objects of similar type and also help in

classifying/grouping the objects.

(b) What do you by Polymorphism?

Polymorphism is the ability of an object to take on many forms. The most common use of

polymorphism in OOP occurs when a parent class reference is used to refer to a child class

object.

(c) Define copy constructor.

The copy constructor is a constructor which creates an object by initializing it with an
object of the same class, which has been created previously.
Java supports for copy constructors but unlike C++ language, Java does not provide an
explicit copy constructor you need to define it yourself.
 In a copy constructor accept an object of the current class and initialize the values of
instance variables with the values in the obtained object.

(d) List down the access specifier in Java.

Four types .

I. default,

II. public

III. protected

IV. private.

(e) What do you mean by JAVA API?

An application programming interface (API), in the context of Java, is a collection of

prewritten packages, classes, and interfaces with their respective methods, fields and

constructors. Similar to a user interface, which facilitates interaction between humans

and computers, an API serves as a software program interface facilitating interaction.

(f) Difference between function overloading and function overriding.

(g) Classify between final and finally statement.

 The final keyword can be used with class method and variable. A final class
cannot be instantiated, a final method cannot be overridden and a final
variable cannot be reassigned.

 The finally keyword is used to create a block of code that follows a try block.
A finally block of code always executes, whether or not an exception has
occurred. Using a finally block allows you to run any cleanup-type statements
that you just wish to execute, despite what happens within the protected code.

(h) What is the role of super statement in constructor?

The super keyword in Java is a reference variable which is used to refer immediate parent

class object.

Whenever you create the instance of subclass, an instance of parent class is created

implicitly which is referred by super reference variable.

(i) Write the syntax of creating an object of a class in java.

className object = new className();

(j) Define virtual function.

Virtual function in Java is expected to be defined in the derived class. We can call the

virtual function by referring to the object of the derived class using the reference or

pointer of the base class.

Q. 2.

(a) What do you mean by stream? Describe i/o stream of java.

Stream

A stream is a sequence of data. In Java, a stream is composed of bytes. It's called a stream

because it is like a stream of water that continues to flow.

A stream can be defined as a sequence of data. There are two kinds of Streams −

 InPutStream − The InputStream is used to read data from a source.

 OutPutStream − The OutputStream is used for writing data to a destination.

Depending on the type of operations, streams can be divided into two primary classes:

Input Stream: These streams are used to read data that must be taken as an input from a

source array or file or any peripheral device. For eg., FileInputStream, BufferedInputStream,

ByteArrayInputStream etc.

InputStream class is an abstract class. It is the superclass of all classes representing an input

stream of bytes.

Useful methods of InputStream

Method Description

1) public abstract int

read()throws IOException

reads the next byte of data from the input stream. It

returns -1 at the end of the file.

2) public int available()throws

IOException

returns an estimate of the number of bytes that can be

read from the current input stream.

3) public void close()throws

IOException

is used to close the current input stream.

Output Stream: These streams are used to write data as outputs into an array or file or any

output peripheral device. For eg., FileOutputStream, BufferedOutputStream,

ByteArrayOutputStream etc.

OutputStream class is an abstract class. It is the superclass of all classes representing an

output stream of bytes. An output stream accepts output bytes and sends them to some

sink.

Useful methods of OutputStream

Method Description

1) public void write(int)throws

IOException

is used to write a byte to the current output stream.

2) public void write(byte[])throws

IOException

is used to write an array of byte to the current

output stream.

3) public void flush()throws IOException flushes the current output stream.

4) public void close()throws IOException is used to close the current output stream.

(b) Describe the working principle of JVM.

Java Virtual Machine (JVM) is a engine that provides runtime environment to drive the

Java Code or applications. It converts Java bytecode into machines language. JVM is a part

of Java Run Environment (JRE). In other programming languages, the compiler produces

machine code for a particular system. However, Java compiler produces code for a Virtual

Machine known as Java Virtual Machine.

 First, Java code is complied into bytecode. This bytecode gets interpreted on

different machines

 Between host system and Java source, Bytecode is an intermediary language.

 JVM is responsible for allocating memory space.

1) ClassLoader

The class loader is a subsystem used for loading class files. It performs
three major functions viz. Loading, Linking, and Initialization.

2) Method Area

JVM Method Area stores class structures like metadata, the constant
runtime pool, and the code for methods.

3) Heap

All the Objects, their related instance variables, and arrays are stored in the
heap. This memory is common and shared across multiple threads.

4) JVM language Stacks

Java language Stacks store local variables, and it’s partial results. Each
thread has its own JVM stack, created simultaneously as the thread is
created. A new frame is created whenever a method is invoked, and it is
deleted when method invocation process is complete.

5) PC Registers

PC register store the address of the Java virtual machine instruction which
is currently executing. In Java, each thread has its separate PC register.

6) Native Method Stacks

Native method stacks hold the instruction of native code depends on the
native library. It is written in another language instead of Java.

7) Execution Engine

It is a type of software used to test hardware, software, or complete
systems. The test execution engine never carries any information about the
tested product.

8) Native Method interface

The Native Method Interface is a programming framework. It allows Java
code which is running in a JVM to call by libraries and native applications.

9) Native Method Libraries

Native Libraries is a collection of the Native Libraries(C, C++) which are
needed by the Execution Engine.

(c) Explain the concept of overriding with example.

If the same method is defined in both the superclass class and the subclass class, then the

method of the subclass class overrides the method of the superclass. This is known as

method overriding.

Java Overriding Rules
 Both the superclass and the subclass must have the same method name, the same

return type and the same parameter list.
 We cannot override the method declared as final and static.

 We should always override abstract methods of the superclass (will be discussed in

later tutorials).

EXAMPLE:-

class Human{

 //Overridden method

 public void eat()

 {

 System.out.println("Human is eating");

 }

}

class Boy extends Human{

 //Overriding method

 public void eat(){

 System.out.println("Boy is eating");

 }

 public static void main(String args[]) {

 Boy obj = new Boy();

 //This will call the child class version of eat()

 obj.eat();

 }

}

Output:

Boy is eating

(d) Explain the file handling classes and methods.

File handling in Java means that how to read from and write to file in Java. Java provides

the basic I/O package for reading and writing streams. java.io package allows to do all

Input and Output tasks in Java .

File Handling Methods

Some of the methods are given below for performing different operations in java:

 createNewFile(): createNewFile method used to create an empty file. It returns the

response as boolean.

 getName(): This method is used to get the file name. It returns the string i.e. name

of the file in response.

 getAbsolutePath(): It returns the absolute path of the file. The return type of this

method is a string.

 canRead(): This method used to check whether the file is readable or not. It returns

a boolean value.

 canWrite(): This method used to check whether the file is writable or not. It returns

a boolean value.

 delete(): This method used in deleting a file. It returns a boolean value.

 exists(): This method used to check whether a file exists or not. It returns a boolean

value.

 length(): This method returns the size of the file in bytes. The return type of this

method is long.

 list(): This method returns an array of the files available in the directory. It returns

an array of string values.

 mkdir(): This method is used to create a directory. It returns a boolean value.

(e) Define constructor. Describe the types of constructor.

Constructors in Java

In Java, a constructor is a block of codes similar to the method. It is called when an

instance of the class is created. At the time of calling constructor, memory for the object is

allocated in the memory.

It is a special type of method which is used to initialize the object.

Every time an object is created using the new() keyword, at least one constructor is called.

Rules for creating Java constructor

1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

Types of Java constructors

There are two types of constructors in Java:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

 Default Constructor

A constructor is called "Default Constructor" when it doesn't have any parameter.

class Bike1

{

Bike1()

{

 System.out.println("Bike is created");}

 public static void main(String args[]){

 Bike1 b=new Bike1();

}

}

o/p-

Bike is created

 Parameterized Constructor

A constructor which has a specific number of parameters is called a parameterized

constructor.

class Student{

 int id;

 String name;

 Student(int i,String n){

 id = i;

 name = n;

 }

 void display(){System.out.println(id+" "+name);}

 public static void main(String args[]){

 Student s1 = new Student4(111,"Karan");

 Student s2 = new Student4(222,"Aryan");

 s1.display();

 s2.display();

 }

}

o/p-

111 Karan

222 Aryan

(f) How we can pass object as parameter?

 When we pass a primitive type to a method, it is passed by value. But when we pass an

object to a method, the situation changes dramatically, because objects are passed by

what is effectively call-by-reference. Java does this interesting thing that’s sort of a hybrid

between pass-by-value and pass-by-reference. Basically, a parameter cannot be changed

by the function, but the function can ask the parameter to change itself via calling some

method within it.

 While creating a variable of a class type, we only create a reference to an object.

Thus, when we pass this reference to a method, the parameter that receives it will

refer to the same object as that referred to by the argument.

 This effectively means that objects act as if they are passed to methods by use of

call-by-reference.

 Changes to the object inside the method do reflect in the object used as an

argument.

import java.util.Scanner;

public class Student {

 private String name;

 private int age;

 public Student(){

 }

 public Student(String name, int age){

 this.name = name;

 this.age = age;

 }

 public Student copyObject(Student std){

 this.name = std.name;

 this.age = std.age;

 return std;

 }

 public void displayData(){

 System.out.println("Name : "+this.name);

 System.out.println("Age : "+this.age);

 }

 public static void main(String[] args) {

 Scanner sc =new Scanner(System.in);

 System.out.println("Enter your name ");

 String name = sc.next();

 System.out.println("Enter your age ");

 int age = sc.nextInt();

 Student std = new Student(name, age);

 System.out.println("Contents of the original object");

 std.displayData();

 System.out.println("Contents of the copied object");

 Student copyOfStd = new Student().copyObject(std);

 copyOfStd.displayData();

 }

}

Output

Enter your name

Krishna

Enter your age

20

Contents of the original object

Name : Krishna

Age : 20

Contents of the copied object

Name : Krishna

Age : 20

(g) What do you mean by member of a class? How member function is defined in a class?

A class has two types of member.

(i) Data Member

(ii) Member function

A method is a block of code or collection of statements or a set of code grouped together

to perform a certain task or operation. It is used to achieve the reusability of code. We

write a method once and use it many times. We do not require to write code again and

again. It also provides the easy modification and readability of code, just by adding or

removing a chunk of code. The method is executed only when we call or invoke it.

public class MyClass {

 static void myMethod() {

 // code to be executed

 }

}

Example:-

public class MyClass {

 static void myMethod() {

 System.out.println("I just got executed!");

 }

 public static void main(String[] args) {

 myMethod();

 }

}

Q. 3. Briefly explain concepts of OOP.

Object

Any entity that has state and behavior is known as an object. For example, a chair, pen,

table, keyboard, bike, etc. It can be physical or logical.

Class

Collection of objects is called class. It is a logical entity.

A class can also be defined as a blueprint from which you can create an individual object.

Class doesn't consume any space.

Inheritance

When one object acquires all the properties and behaviors of a parent object, it is known

as inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

Polymorphism

If one task is performed in different ways, it is known as polymorphism. For example: to

convince the customer differently, to draw something, for example, shape, triangle,

rectangle, etc.

In Java, we use method overloading and method overriding to achieve polymorphism.

Another example can be to speak something; for example, a cat speaks meow, dog barks

woof, etc.

Abstraction

Hiding internal details and showing functionality is known as abstraction. For example

phone call, we don't know the internal processing.

In Java, we use abstract class and interface to achieve abstraction.

Encapsulation

Binding (or wrapping) code and data together into a single unit are known as

encapsulation. For example, a capsule, it is wrapped with different medicines.

A java class is the example of encapsulation. Java bean is the fully encapsulated class

because all the data members are private here.

Q. 4. Describe the structure of java program.

Example:-

//Name of this file will be "Hello.java"

public class Hello
{
 /*
 Writes the words "Hello Java" on the screen */
 public static void main(String[] args)
 {
 System.out.println("Hello Java");
 }
}

Q. 5. Explain the types of inheritance in OOPs.

In Java, it is possible to inherit attributes and methods from one class to another. We

group the "inheritance concept" into two categories:

 subclass (child) - the class that inherits from another class

 superclass (parent) - the class being inherited from

To inherit from a class, use the extends keyword.

Types of inheritance

Types of Inheritance in Java.

Single Inheritance: refers to a child and parent class relationship where a class extends

the another class.

Multilevel inheritance: refers to a child and parent class relationship where a class

extends the child class. For example class C extends class B and class B extends class A.

Hierarchical inheritance: refers to a child and parent class relationship where more

than one classes extends the same class. For example, classes B, C & D extends the same

class A.

Multiple Inheritance: refers to the concept of one class extending more than one

classes, which means a child class has two parent classes. For example class C extends

both classes A and B. Java doesn’t support multiple inheritance, read more about it here.

To reduce the complexity and simplify the language, multiple inheritance is not supported

in java.

Consider a scenario where A, B, and C are three classes. The C class inherits A and B

classes. If A and B classes have the same method and you call it from child class object,

there will be ambiguity to call the method of A or B class.

Hybrid inheritance: Combination of more than one types of inheritance in a single

program. For example class A & B extends class C and another class D extends class A then

this is a hybrid inheritance example because it is a combination of single and hierarchical

inheritance.

Q. 6. Illustrate the exception handling mechanism in java.

EXCEPTION HANDLING IN JAVA

The Exception Handling in Java is one of the powerful mechanism to handle the
runtime errors so that normal flow of the application can be maintained.

Exception Handling is a mechanism to handle runtime errors such as

ClassNotFoundException, IOException, SQLException, RemoteException, etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the

application. An exception normally disrupts the normal flow of the application that is why

we use exception handling

Java Exception Keywords

There are 5 keywords which are used in handling exceptions in Java.

Keyword Description

try The "try" keyword is used to specify a block where we should place exception code.

The try block must be followed by either catch or finally. It means, we can't use try

block alone.

catch The "catch" block is used to handle the exception. It must be preceded by try block

which means we can't use catch block alone. It can be followed by finally block later.

finally The "finally" block is used to execute the important code of the program. It is executed

whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It doesn't throw an exception. It

specifies that there may occur an exception in the method. It is always used with

method signature.

public class JavaExceptionExample{

 public static void main(String args[]){

 try{

 int data=100/0;

 }catch(ArithmeticException e){System.out.println(e);}

 System.out.println("rest of the code...");

 }

}

o/p-

java.lang.ArithmeticException: / by zero

rest of the code...

Q.7. Define package. Write a simple program that describes package.

JAVA PACKAGE

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined
package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql
etc.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Example:-

import java.util.Scanner; // import the Scanner class

class MyClass {

public static void main(String[] args) {

Scanner myObj = new Scanner(System.in);

String userName;

// Enter username and press Enter

System.out.println("Enter username");

userName = myObj.nextLine();

System.out.println("Username is: " + userName);

}

}

