PNS SCHOOL OF ENGINEERING AND TECHNOLOGY			
Branch: Electrical Engineering	Semester: 4 TH	Name of the Lecturer: Jayakanta Mallick	
Subject: EC-I	No of lasses Alloted in a Week: 6	Duration of Semester: 14.2.2023 - 23.5.2023	
Week	Class Day	Theory / practical Topic	
	1	DC Generator- Operating principle of generator	
1st	2	Constructional features of DC machine (Yoke, Pole & field, Armature, Commutator)	
	3	Armature winding, back pitch, Front pitch, Resultant pitch and commutator- pitch	
	4	Simple Lap and wave winding, Dummy coils	
	5	Different types of D.C. machines (Shunt, Series and Compound)	
	6	Derivation of EMF equation of DC generators with problems.	
	1	Losses and efficiency of DC generator.	
2-1	2	Condition for maximum efficiency and numerical problems	
	3	Armature reaction in D.C. machine	
2110	4	Commutation and methods of improving commutation	
	5	Role of inter poles and compensating winding in commutation	
	6	Characteristics of D.C. Generators	
	1	Application of different types of D.C. Generators, Concept of critical resistance and critical speed of DC shunt generator	
	2	Conditions of Build-up of emf of DC generator,	
3rd	3	Parallel operation of D.C. Generators,	
	4	Uses of D.C generators	
	5	Class Test -I	
	6	DC Motor- working principle of DC motor, Significance of back emf in D.C. Motor	
	1	Voltage equation of D.C.Motor and condition for maximum power output(problems)	
	2	Derive torque equation (solve problems)	
	3	Characteristics of shunt, series and compound motors and their application	
4th	4	Starting method of shunt, series and compound motors	
	5	Speed control of D.C shunt motors by Flux control method. Armature voltage Control method	
	6	Speed control of D.C. series motors by Field Flux control method, Tapped field method and series-parallel method	
5th	1	Determination of efficiency of D.C. Machine by Brake test method	
	2	Numerical Problems	
	3	Determination of efficiency of D.C. Machine by Swinburne's Test method	
	4	Numerical Problems	
	5	Losses, efficiency and power stages of D.C. motor(solve numerical problems)	
	6	Uses of D.C. motors	
6th	1	Internal Assessment	
	2	Single Phase Transformer- Working principle of transformer.	
	3	Constructional feature of Transformer	
	4	Arrangement of core & winding in different types of transformer	
	5	Brief ideas about transformer accessories such as conservator, tank, breather, and explosion vent etc.	
	6	Explain types of cooling methods	

7th	1	State the procedures for Care and maintenance
	2	EMF equation of transformer
	3	Ideal transformer voltage transformation ratio
	4	Operation of Transformer at no load with phasor diagram
	5	Operation of Transformer on load with phasor diagram
	6	Equivalent Resistance, Leakage Reactance and Impedance of transformer.
	1	To draw phasor diagram of transformer on load, with winding Resistance and Magnetic
		leakage with using upf, leading pf and lagging pf load.
	2	To explain Equivalent circuit and solve numerical problems
8th	3	Approximate & exact voltage drop calculation of a Transformer
	4	Regulation of transformer
	5	Different types of losses in a Transformer
	6	Explain Open circuit and.(Solve numerical problems)
	1	Explain Short Circuit test .(Solve numerical problems)
Qth	2	Explain Efficiency, efficiency at different loads and power factors, condition for
911		maximum efficiency (solve problems)
	3	Explain All Day Efficiency
	4	Numerical Problems
9th	5	Determination of load corresponding to Maximum efficiency.
	6	Parallel operation of single phase transformer
	1	Class Test - II
	2	Autotransformer- Constructional features of Auto transformer
	3	Working principle of single phase Auto Transformer.
10th	4	Comparison of Auto transformer with a two winding transformer (saving of
		Copper).
	5	Uses of Auto transformer
	6	Explain Tap changer with transformer (on load and off load condition)
	1	Instrument Transformers- Explain Current Transformer and Potential transformer
	2	Define Ratio error, Phase angle error, Burden
11th	3	Uses of C.T. and P.T
	4	Previous Semester Question Discussion
Ι Γ	5	Previous Semester Question Discussion
	6	Previous Semester Question Discussion

Signature of the Lecturer Signature of the H.O.D.