Wi
/E’Fa?)
By
e’

PNS SCHOOL OF ENGINEERING & TECHNOLOGY
Nishamani Vihar, Marshaghai, Kendrapara

LECTURE NOTES
ON
DIGITAL ELECTRONICS & MICROPROCESSOR

DEPARTMENT OF ELECTRICAL ENGINEERING

5™ SEMESTER

PREPARED BY
MR. ADITYA NARAYAN JENA

LECTURER IN ELECTRONICS & TELECOMMUNICATION

INTRODUCTION -
= The term digital refers to a process that is achieved by using discrete unit.
= In number system there are different symbols and each symbol has an absolute value
and also hasplace value.
1.1 NUMBER SYSTEM:-
In general a number in a system having base or radix * r * can be written as
8n A1 A2 coinnienn 8 .8 82 i@ em
This will be interpreted as
Y, X 4 8 X 4 02X 2 4 e, +8aXr%% aqxr4aaxr? b dagxr™
where Y = value of the entire number

a, . the value of the n'"
digitr = radix
TYPES OF NUMBER SYSTEM:-

There are four types of number systems. They are
Binary number system

Octal number system

Decimal number system

Hexadecimal number system

W on o=

» BINARY NUMBER SYSTEIM:-

» The binary number system is a positional weighted system.
- The base or radix of this number system is 2.

= It has two independent symbols.

- The symbols used are 0 and 1.

= A binary digit is called a bit.

- The binary point separates the integer and fraction parts.

» QOCTAL NUMBER SYSTEM:-
- Itis also a positional weighted system.
« Its base or radix is 8.

- Ithas 8independent symbols 0,1,2,3,4,5,6and 7.
« Itsbase 8=2", every 3- bit group of binary can be represented by an octal digit.

DECIMAL NUMBER SYSTEM;-

+ The decimal number system contain ten unique symbols 0,1,2,3,4,5,6,7,8 and 9.

- Indecimal system 10 symbols are involved, so the base or radix is 10.

« Itis a positional weighted system.

- The value attached to the symbol depends on its location with respect to the decimal
point.

» HEXADECIMAL NUM T

« The hexadecimal number system is a positional weighted system.

- The base or radix of this number system Is 16.

« Thesymbolsused are0,1,2,3,4,56,789ABCDEandF

- Thebase 16 =24, every 4 - bit group of binary can be represented by an hexadecimal
digit.

< CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER :-
1. BINARY NUMBER SYSTEM:-
(a) Binary to decimal conversion:-

In this method, each binary digit of the number is multiplied by its positional weight and
the product termsare added to obtain decimal number.

Examples:

(i) Convert(10101);to
decimal.Solution :

(Positional weight) 2%2°272'2°

Binary number 10101
=(0x2)+0x2)+ (1x2)+(0x2) + (129
=16+0+4+0+1
= (21

(i) Convert (117.1017); o0
decimal.Solution:
(111,101 =(1x2D+(1x2N+ (1 2°)+ (1x2 ")+ (0x2D)+ (1x27

=4+2+1+05+0+0.125
= (7.625)

(b) Binary to Octal conversion -

For conversion binary to octal the binary numbers are divided into groups of 3 bits each,

starting at thebinary point and proceeding towards left and right.

—— Binary Qda Binary

0 000 4 100
1 001 5 101
2 010 6 110
3 011 7 m
Examples:
(i) Convert (101111070110.110110011); into octal.
Solution:
Group of 3 bits are 0 11 01 1M0. 110 11 O
1 1 0 0 1
Conver| each group into 5 7 2 & . 6 &6 3
octal =
The result is (5726.663)g
Hexadecimal Binary Hexadecimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 0nm
1 0100 i 1100
5 0101 D 1101
6 0110 E 1110
7 01 F 1

Example:

(i) Convert (1011011011); into hexadecimal.

Solution:

Given Binary number

Group of 4 bits are

Convert each group into hex =
The resull is (2DBs

(i) Convert (01011111011.011111), into hexadecimal.

Solution:
Given Binary number

Group of 3 bits are = 0010

Convert each group into octal =
The resull is (2FB.7C)ys

2. DECIMAL NUMBER SYSTEM:-
(a) Decimal to binary conversion:-

In the conversion the integer number are converted to the desired base using successive

division by the base or radix.

Example:
(i Convert (52), into binary.
Solution:

Divide the given decimal number successively by 2 read the integer part remainder upwards
lo getequivalent binary number. Multiply the fraction part by 2. Keep the integer in the
product as it is and multiplythe new fraction in the product by 2. The process is continued
and the integer are read in the products from top to bottom.

2152
2126 —
0
2113 —
0
e —
-
) . -
0
g1 —
.
0 W
1

Answer of (52);, is (110100)..

7

. 0111 M
. 0m

1100
Cc

(i) Converl (105.15) g into binary.

Solution: Integer part Fraction part
21105 0.15%x2=0.30
2152 T 9 0.30x2=060
2126 T o 0.60%x2 =120
2113 T o 0.20x2 = 0.40
26 T 040x2 =080
/3 —ao 0.80x2 =160
217 T
0 1

Result of (105.15)10 s (1101001.001001);

(b) Decimal 1o octal conversion:-

To convert the given decimal integer number to octal, successively divide the given number
by 8 till the quotient is 0. To convert the given decimal fractions to octal successively multiply
the decimal fraction and the subsequent decimal fractions by 8 till the product is 0 or till the
required accuracy is obtained.

Example:
() Convert (378.93)w into octal.

Solution: ¢ | 555 093 K8 =744
8l4a7 — 2 0.44x8 =352
8ls ~ 7 052x8=416

0 5 0.16%8 = 1.28

Result of (378.93)ypis (572.7341)

(¢) Decimal Lo hexadecimal conversion: -

The decimal to hexadecimal conversion is same as octal.
Example:

(i) Convert (2598.675)+, into
hexadecimal. Solution:

161 0.675x16=108 A

2598

161162 — 6 6 0800x16=128 c

16110 — 2 2 0.800x16=128 C
0 —10 A 0.800x16=128 C

To convert a given a octal number to binary, replace each octal digit by its 3- bit binary
equivalent.

Example:
Convert (367.52)s into binary.

Solution:
Given Octal number is &6 1. 5 2
Convert each group octalto binary 110 111 . 101 010

Result of (367.52)is (011110111.101010):

(b) Qctal to decimal conversion:-
For conversion octal to decimal number, multiply each digit in the octal number by the
weight of its position and add all the product terms

For example: -
Convert (4057.06) ¢ to decimal
Solution:
(4057.06)g = 4x8°+0x8 +5x8 +7x8"+0x8™" +6x8?

= 2048 +0+40+7+0+0.0937
(2095. 0937)1¢

Result is (2095.0937)4q

(¢) Octal to hexadecimal conversion:-

For conversion of octal to Hexadecimal, first convert the given octal number to binary
and then binarynumber to hexadecimal.

For example :-

Convert (756.603)g to hexadecimal.

Solution :-

Given octal no. 7 5 6 ; 6 0 3
g%r;verteachoctaldigitto = 111 101 110 . 110 000 011
Group of 4bits are = 0001 1170 1110 . 1100 0(1)0 180
Convert 4 bits group to hex. = d E E . C 1 8
Result is (1EE.C18)+4

(4 HEXADECIMAL NUMBER SYSTEM :-

(a) Hexadecimal to binary conversion:-

For conversion of hexadecimal to binary, replace hexadecimal digit by its 4 bit
binary group.

For example:
Convert (3A9E.BOD),s into binary.

Solution:
Given Hexadecimal numberis 3 A 9 E . B 0 D

Convert each hexadecimal =0011 1010 1007 1110 . 1011 0000
1101digit to 4 bit binary

Result of (3A9E.BOD)g is (0011 1010 1001 1110.1011 0000 1101),

(b) Hexadecimal to decimal conversion:-
For conversion of hexadecimal to decimal, multiply each digit in the hexadecimal
number by its position weight and add all those product terms.

For example: -
Convert (AOF9.0EB), to decimal

Solution:
(AOF9.0EB)1,= (10x16°)+(0x 162)+(15x 16") +(9x 16°) +(0x 16~) +(14x 16) +(11 x 16
.

= 40960+ 0+ 240 + 9 + 0 +0.0546 + 0.0026

Result is (41209.0572)40
(¢) Hexadecimal to Octal conversion:-

For conversion of hexadecimal to octal, first convert the given hexadecimal number to
binary and then binary number to octal.

For example :-

Convert (B9F.AE),, to octal.

Solution :-

Given hexadecimal no.is
Convert each hex. digit to

B 9 F . A E
1011 1001 1111 1010 1110

binary
Group of 3 bits are = 101 110 110111 . 101 011 100
Convert 3 bits group to octal. = 5 6 6 7 .5 3 4

Result is (5637.534)

ARITHEMATIC OPERATION

BINARY ARITHEMATIC OPERATION :-
1. BINARY ADDITION:-

The binary addition rules are as follows
0+0=0:0+1=1:1+0=1:1+1=10,i.e0withacarryof 1

For example :-

Add (100101), and (1101111),.
Solution :-

100101
+ 11071117
10010100
Result is (10010100);

2. BINARY SUBTRACTION:-
The binary subtraction rules are as follows
0-0=0;1-1=0;1-0=1;0-1=1, withaborrowof 1

For example :-

Substract (111.111), from

(1010.01),.

Solution :-
1010.010
123 . 111
0010 .011

Result is (0010.011),

3. BINARY MULTIPLICATION:-
The binary multiplication rules are as
followsOx0=0:1x1=1:1x0=0;

0x1=0
For example :-
Multiply (1101); by (110)..
Solution :-

1101

X 110
0000
1101
+ 1101
1001110

Result is (1001110),

4. BINARY DIVISION:-

The binary division is very simple and similar to decimal number system. The division by ‘0’
is meaningless.So we have only 2 rules

0+1=0

1+1=1

For example :-
Divide (10110); by (110),.

Solution :-

110) 101101 (111.1
110 __
1010
110

1001
_110.
110
110
000

Result is (111.1),

DIGITAL CODES:-

In practice the digital electronics requires to handle data which may be numeric,
alphabets and special characters. This requires the conversion of the incoming data into
binary format before it can be processed. There is various possible ways of doing this
and this process is called encoding. To achieve the reverse of it, we use decoders.

WEIGHTED AND NON-WEIGHTED CODES -
There are two types of binary codes

1) Weighted binary codes

2) Non- weighted binary codes

In weighted codes, for each position (or bit) ,there is specific weight attached.
For example, in binary number, each bit is assigned particular weight 2n where 'n" is
the bit number for n=0,1,2,3,4 the weights are 1,2,4,8,16 respectively.

Example :- BCD

Non-weighted codes are codes which are not assigned with any weight to each digit

position, i.e., each digit position within the number is not assigned fixed value.
Example:- Excess - 3 (XS -3) code and Gray codes

BINARY CODED DECIMAL (BCD:-

BCD is a weighted code. In weighted codes, each successive digit from right to left
represents weights equal to some specified value and to get the equivalent decimal
number add the products of the weights by the corresponding binary digit.8421 is the
most common

For example:-
(567),, is encoded in various 4 bit codes.
Solution:-

Decimal = 5 6 7

8421code - 010 011 01

1 0 1

6311 code -» 011 100 100

1 0 1

5421code - 100 010 101
0 0 0

EXCESS THREE(XS-3) CODE:-

The Excess-3 code, also called XS-3, is a non- weighted BCD code. This derives it name from the
fact that each binary code word is the corresponding 8421 code word plus 0011(3). It is a
sequential code. It is a self complementing code.

GRAY CODE:-

The gray code is a non-weighted code. It is not a BCD code. It is cyclic code because successive
words in thisdiffer in one bit position only i.e it is a unit distance code.

Gray code is used in instrumentation and data acquisition systems where linear or angular
displacement is measured. They are also used in shaft encoders, I/0 devices, A/D converters and
other peripheral equipment.

BINARY-TO — GRAY CONVERSION:-

If an n-bit binary number is represented by B, Bp1----- B1 and its gray code equivalent by

T B T G1,

where B, and G, are the MSBs , then gray code bits are obtained from the binary code as
followsGg =B,

Gn-1 = Bn Bn-

Gy = BQE}BI
Where the symb@ stands for Exclusive OR (X-OR)

For example
Convert the binary 1001 to the Gray code.

Solution :-

Binary > 1 —@®—>0 — @ —>0 — & — 1
| l | }

Gray = 1 1 0 1
The gray code is 1101

GRAY- TO - BINARY CONVERSION:-

- A B B S e G i S

then binary bits are obtained from Gray bits as

follows :B, = (3,
Bn-1 = Bn Gn-1

Bi= B,®G

For example :-
Convert the Gray code 1101 to the binary.

Solution :-
Gray = 1 1 0 1
/ r i
fay
| y: l_@ l y)
Binary—=> 1 0 0 1

The binary code is 1001

1s COMPLEMENT REPRESENTATION :-
The 1's complement of a binary number is obtained by changing each 0 to 1 and each 110 0.

For example :-
Find (1100); 1's complement.
Solution :-
Given 1 1 0 0
1's complement is 0 0 1 1
Result is (0011),
2 ESENTATION :-

The 2's complement of a binary number is a binary number which is obtained by adding 1 to
the 1'scomplement of a number i.e.
2's complement = 1's complement + 1

For example -
Find (1010); 2's complement.
Solution :-
Given 1 0 1 0
1's complement is 0 1 0 1
+ 1
2's complement 0 1 1 0

Result is (0110);
SUBSTRACTION USING COMPLEMENT METHOD :-

1's COMPLEMENT:-

In 1's complement subtraction, add the 1's complement of subtrahend to the minuend. If there
is a carry oul, then the carry is added to the LSE. This is called end around carry. If the MSB is 0,
the result is positive. If the MSB is 1, the result is negative and is in its 1's complement form.
Then take its 1's complement to get the magnitude in binary.

For example:-
Subtract (10000); from (11010): using 1's complement.

Solution:-
11010 11010 = 26
- 1000 = +_ 01111 (1'scomplement) =-16

0
Carry - 101001 +10

© ____1
01010 =+10

Result is +10

2's COMPLEMENT:-

In 2's complement subtraction, add the 2's complement of subtrahend to the minuend.
If there is a carry out, ignore it. If the MSB is 0, the result is positive. If the MSB is 1, the
result is negative and isin its 2's complement form. Then take its 2's complement to get
the magnitude in binary.

For example:-
Subtract (1010100); from (1010100); using 2’s complement.

Solution:-
1010100 1010100 = 84
- 1010100 = +_0101100 (2's complement) - B4
_ 10000000 ((Ignore the carry) 0
R 0 (result = 0)

Hence MSB is 0. The answer is positive. So it is +0000000 = 0

LOGIC GATES

LOGIC GATES -

- Logic gates are the fundamental building blocks of digital systems.

- There are 3 basic types of gates AND, OR and NOT.

- Logic gates are electronic circuits because they are made up of a number of
electronic devices andcompanents.

- Inputs and outputs of logic gates can occur only in 2 levels, These two levels are
termed HIGH andLOW, or TRUE and FALSE, or ON and OFF or simply 1 and 0.

+ The table which lists all the possible combinations of input variables and the
corresponding outputs iscalled a truth table.

LEVEL LOGIC:-

A logic in which the voltage levels represents logic 1 and logic 0. Level logic may be positive or
negative logic.Positive Logic:-
A positive logic system is the one in which the higher of the two voltage levels represents the
logic 1 and thelower of the two voltages level represents the logic 0.
Negative Logic:-
A negative logic system is the one in which the lower of the two voltage levels represents the
logic 1 and thehigher of the two voltages level represents the logic 0.

IFFERENT TYP F T

NOT GATE (INVERTER).-

- ANOT gate, also called and inverter, has only one input and one output.

+ ltis a device whose output is always the complement of its input.

« The output of a NOT gate is the logic 1 state when its input is in logic 0 state and the
logic 0 state whenits inputs is in logic 1 state.

IC No. :- 7404

Truth table

|_ _I INPUT 0

uTp
A A
1
0

0 1 1 0 0
1

AND GATE -

« An AND gate has two or more inputs but only one output.
« The output is logic 1 state only when each one of its inputs is at logic 1 state.
- The output is logic 0 state even if one of its inputs is at logic 0 state.

IC No.:- 7408

Logic Symbol
A_.
Truth Table
OUTPUT
0 0 1 1 A B Q=A.B
| | l 0 0 0
A
0 1 0
01 0 1 1o 0
| | | | | 1 1 1
B
|0 0 0 _]_I
Q

- An OR gate may have two or more inputs but only one output.
- The output is logic 1 state, even if one of its input is in logic 1 state.
« The output is logic 0 state, only when each one of its inputs is in logic state.

IC No.:- 7432

A
) O

Logic Symbol
Truth Table

Timing Diagram
Truth table:

" l—_l—l INPUT ouUTPUT
A B Q=A+B
0 1 0. 1 e 9
| | 0 1 1
B 1 0 1
1 1 1

NAND GATE:-

+ NAND gate is a combination of an AND gate and a NOT gate.
+ The output is logic 0 when each of the input is logic 1 and for any other
combination of inputs, theoutput is logic 1.

IC No.:- 7400 two input NAND
gate 7410 three input
NAND gate7420 four
input NAND gate 7430
eight input NAND gate

Logic Symbol

.
B = g

Timing Diagram

B

1. 1 1 0
Q L]
NOR GATE:-

Truth Table
[INPUT OUTPUT
A B Q= —
0 1
0 1 1
1 0 1
1 1 0

« NOR gate is a combination of an OR gate and a NOT gate.
+ The oulput is logic 1, only when each one of its inpul is logic 0 and for any other
combination of inputs, the output is a lagic 0 level.

IC No.:- 7402 two input NOR
gate 7427 three input

NOR gate7425 four
input NOR gate

Logic Symbol

Truth Table

INPUT —OUTPOT |

B Q=A+B

- o|lo| P>

-

(=]
o|lc|O| -

EXCLUSIVE — OR (X-OR) GATE:-

. An X-OR gate is a two input, one output logic circuit.
. The output is logic 1 when one and only one of its two inputs is logic 1. When both the

inputs is logic 0 or when both the inputs is logic 1, the output is logic 0.

IC No.:- 7486
Logic Symbol Truth Table
INPUT OUTPUT
A B | a=-APB
0 0 0
INPUTS are Aand B 0 1 1
OUTPUTisQ=AEB ! b g
i 1| 1 o

=A'B+AB

An X-NOR gate is the combination of an X-OR gate and a NOT gate.

An X-NOR gate is a two input, one output logic circuit.

The output is logic 1 only when both the inputs are logic 0 or when both the inputs is 1.
The output is logic 0 when one of the inputs is logic 0 and other is 1

IC No.:- 74266
Logic Symbal
INPUT OUTPUT
A A B OUT =A XNOR 8
out
B o |o 1
0 1 0
1 0 0
1 1 1
OUT=-AB+AB
=AXNORB
Timing Diagram
0 0 .
A
0 1 0 1
B L[L[]
1 0 0 1
ouT

UNIVERSAL GATES:-

There are 3 basic gates AND, OR and NOT, there are two universal gates NAND and NOR, each
of which can realize logic circuits single handedly. The NAND and NOR gates are called universal
building blocks. Both NAND and NOR gates can perform all logic functions i.e. AND, OR, NOT,
EXOR and EXNOR.
NAND GATE:-

a) Inverter from NAND gale

D

Input =
OutputQ=A

b) AND gate from NAND gate

Input s are A and BOutput Q = AB
e Q
B—

Inputs are A and BOutput Q = A+B

s .

[1
H_—_}J“:)H

c) OR gat NAND gate

d) NORgate from NAND gate
Inputs are A and BOutput Q = A+B

o

o) EX-OR gate from NAND gate

Inputs are A ard_B Output Q = A'B +AB'

A

f) EX-NOR gate From NAND gate

Inputs are A and B
OutputQ=AB+A'B’

NOR GATE:-
a) lnverter from NOR gate

Input =A
Qutput Q= A’

A—(DD—Q

b) AND gate from NOR gatelnput s are A and B Output Q= A.B

a) ORgate from NOR gate

Inputs are A and BOutput Q = A+B

A —
HﬂDD'ED_Q

b) NAND gate from NOR gate
Inputs are A and BOutput Q= AB

A

& |

¢) EX-ORgate from NOR gate

Inputsare Aand_B OutputQ=A'B + AB’

A

d) EX-NOR gate From NORgate

Inputs are A and B OutputQ=AB + A'B'

—
\——

| X

l

L
)\\ 4 : 5_\ 1 XNON 4
IJ—A—ML,"'_J_J

INTRODUCTION -

Switching circuits are also called logic circuits, gates circuits and digital circuits.

+ Switching algebra is also called Boolean algebra.
Boolean algebra is a system of mathematical logic. It is an algebraic system consisting
of the set ofelements (0,1), two binary operators called OR and AND and unary

operator called NOT.

- Itis the basic mathematical tool in the analysis and synthesis of switching circuits.
It is a way to express logic functions algebraically.
Any complex logic can be expressed by a Boolean funclion.
The Boolean algebra is governed by certain well developed rules and laws.

AXIOMS AND LAWS OF BOOLEAN ALGEBRA -

Axioms or postulates of Boolean algebra are set of logical expressions that are accepted
without proof and upon which we can build a set of useful theorems. Actually, axioms are
nothing more than the definitions of the three basic logic operations AND, OR and INVERTER.
Each axiom can be interpreted as the outcome of an operation performed by a logic gate.

AND opcration
Axiom1:0.0=0

Axiom 2: 0.1
Axiom 3:1.0
Axiom 2: 1.1

0
0
1

1. Complementation Laws:-

OR opcration NOT opcration
Axiom5:0+0 _
=0 Axiom9:1=0
Axiom6:0+1=1 Axiom 10:0=1
Axiom7:1+0=1
Axiom8:1+1=1

The term complement simply means to invert, i.e. to changes 0s to 1s and 1 to 0s. The five laws
of complementation are as follows:

Law1: 0=1
law 2:1=0

Law 3:ifA=0,thenA=%
Law 4:ifA=1thenA=0

Law5: A=0 (d_ouble complementation law)

2. OR Laws:-

The four OR laws are as
followsLaw 1: A+ 0=

0

lLaw2:A+1=1
Law 3: A+ A=ALaw

4 A+A=T
3. AND Laws:-

The four AND laws are as
follows Law 1: A.0=0
law2:A.1=1

law3: A A=A
Law 4: Af\zo

4. Commutative Laws:-

Commutative laws allow change in position of AND or OR variables. There are two commutative
laws.

law1:A+B=B+A

A B A+B B B+ A
0 0 D 0 0 0
o |1 1 0o |1 1
1 0 1 & 1 0 1
1 1 1 1 1 1
Law2:A.B=B.A
A B A.B B A B.A
0 0) 0 0 0
0 1 0 0 1 0
1 |0 |o B 1 o o
1 1 1 1 1 1

This law can be extended to any number of variables. For example
AB C-B.C.A=C.A.B=B.A.C

5. Associative Laws:-

The associative laws allow grouping of variables. There are 2 associative laws.
Law1: (A+B)+C=A+(B+C)

A B |C |A+B|(A+B}C A B B+C | A+(B+C)
o o |o 0 0 0o [0 o Jo
0 o |1 1 0 o |1 1
0 1 0 1 1 0 1 0 1 1
0 T EE - 0 1 (1 {1 |1
1 0o [0 |1 |1 1 o (o |o |1
1 o |1 |1 | 1 o |1 |1 |1
1 1|0 (1 [1 1 |o |1 |1
1 1 1 1 1 1 1 1 1 1
law2: (A B)C=A(B .0
A B c AB |(AB)C | A B G B.C | A(B.C)
0 0 0 0 0 0 0 0 0 0
0 o |1 |o |o 0 o [1v o J|o
0 1 |0 |o |o 0 v [0 [o |o
0 1 |1 |o |o _ 0 v (v | jo
1 o (o |o |0 i 1 o |9 |0 |e
1 o (1 |o |o 1 o [|9 |o
1 1 |o |1 o 1 L L LU L
1 N EEENE ! A . OO [.

This law can be extended to any number of variables. For

Example
A(BCD) = (ABC)D = (AB) (CD)

6. Distributive Laws:-
The distributive laws allow factoring or multiplying out of expressions. There are two distributive
laws.

Law 1: A(B+C)=AB + AC

A B c B+C | A(B+C) A B c AB | AC | A+(B+C)
0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0
0 1 0 1 0 0 1 0 0 0 0
0 1 1 1 0 0 1 1 0 0 0
1 0 0 0 0 = 1 0 0 0 0 0
1 0 1 1 1 1 0 1 0 1 1
1 1 0 1 1 1 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1
Law 2: A + BC = (A+B)

(A+C)Proof RHS = (A+B) (A+C)

=AA + AC + BA +BC

=A+AC + AB + BC

=A(1+C+B)+BC

=A.1+BC (1+«C+B=1+B=1)

=A+BC

= LHS

7. Redundant Literal Rule
(RLR):-Law 1: A+ AB=A
+B

A+AB=(A+A)(A+B)
=1.(A+B)
=A+B

Law 2: A (A + B) =AB

=AA' + AB
=0+ AB
= AB

8. ldempotence Laws:- Idempotence means same value.
law1: A A=A

IfA=0,thenA.A=0.0=0

=AlIfA=1thenA A=1.1

=1=A

This law states that AND of a variable with itself is equal to that variable only.

Law2:A+ A=A

IfA=0,thenA+A=0+0=0
=AlfA=1,thenA+A=1+1

- 1 - A
This law states that OR of a variable with itself is equal to that variable only.

9. Absorption Laws:-
There are two laws:

Law1:A+A-B=A A B AB | A+AB
A+A-B=A(1+B)=A-1=A e 9 |9 Ie

0 1 0 0

1 0 0 1

1 1 1 1

2A(A+B)=A

A(A+B)=A-A+A B=A+AB=A(1+B)=A-1=A
Law

A B A+B | A(A+B)
0 0 0 |0
0 1 1 0
1 0 1 1
1 il 1 1

10. De Morgan's Theorem:-
Law 1: (A+B)' =A"- B’

A B | A+B|A+B A B A B |AB
5 5 3 0| 0 1 k.
~u | A) 5 i 0 1 1 0o | o
1 0 1 0 ‘1| 0 0 1 0
3 3 3 5 1 1 0 o | o

This law states that the complement of a sum of variables is equal to the product of their

individualcomplements.
Llaw 2: (A-BY=A'+B

A LB AR A8 A | B | A | B |A+B
0 0 1

o o | 1 [1] 1
o | 1| o 1 &

0 |1 1| o | 1
10| o 1

1o | o | 1] 1
1 1 1 0 |

11| oo o

This law states that the complement of a product of variables is equal to the sum of their
individualcomplements.

Types of canonical expression:

1. Sum of Product (SOF)
2. Product of Sum (POS)

SUM - OF - PRODUCTS FORM

This is also called disjunctive Canonical Form (DCF) or Expanded Sum of Products Form
or CanonicalSum of Products Form.
In this form, the function is the sum of a number of products terms where each product
term contains allvariables of the function either in complemented or uncomplemented
form.
This can also be derived from the truth table by finding the sum of all the terms that
corresponds tothose combinations for which f * assumes the value 1.
For example
f(A, B, C)=AB+BC

=AB(C+C)+BC(A+A)

=ABC + ABC' + ABC + A'BC
The product term which contains all the variables of the functions either in
complemented oruncomplemented form is called a minterm.

The minterm is denoted as mo, m1, m2
An 'n’ variable function can have 2n minterms.

Another way of representing the function in canonical SOP form is the showing the sum
of minterms forwhich the function equals to 1.
For example
F{A, B, C)=my+myt My+ms
ar
f(A B C)=gm(1,2, 3,5
where ¥ m represents the sum of all the min terms.

PRODUCT- OF - SUMS FORM:-

L] " & @ -

This form is also called as Conjunctive Canonical Form (CCF) or Expanded Product - of
— Sums Formor Canonical Product Of Sums Form,

This is by considering the combinations for which f =0

Each term is a sum of all the variables.

The function f (A, B,C) = (A+B +C-C’)+ (A+B + C-C')

=(A+B+C)(A+B+C)(A+B+C)(A+B+C)

The sum term which contains each of the ‘n’ variables in either complemented or
uncomplemented formis called a maxterm.
Maxterm is represented as Mg, My, M, ...
Thus CCF of 'f* may be

written as f(A, B, C)=

Ml] 2 M4 - Mﬁ,' M',l

or

f(A,B,C)=(0.4,67)
Where represented the product of all maxterms.

1.SUM OF PRODUCT (SOP) FORM or MINTERM:

+ The SOP expression usually takes the form of two or more variable ANDed together
ORed with two or more other variable ANDed together.

Example=>AB'+AC+A'BC
=2AB+CD

STANDARD SOP FORM:
+ Aslandard SOP expression is one in which all the variables is present in each product
term in the expression.

+ Example 2AB'CD+A'B'CD'+ABC'D’

2.PRODUCT OF SUM (POS)FORM or MAXTERM:
+ The POS expression generally takes the form of two or more ORed .Variable with in
parentheses ANDed with two or mare other variable within parentheses.

Example=» (A+B).(C+D)
2 (X+Y')Y+Z)
2 (Y+Z'+X)(XY+Z)
STANDARD POS FORM:
+ A standard POS expression is one in which all the variables is present in each sum
term in the expression.

+ Example=2(A'+B'+C'+D")(A+B'+C+D)(A+B+C'+D)

GENERAL SOP TO STANDARD SOP:

Example 1:
AB+BC

Solution-AB.1+BC.1

=AB(C+C')+BC(A+A")

=ABC+ABC'+ABC+A'BC

=ABC+ABC'+A'BC [ABC+ABC=ABC Using OR rules A+A=A]

Example 2:

ABC'+AB+C

Solution:
=ABC'+AB(C+C")+C(A+A")(B+B")
=ABC'+ABC+ABC'+C(AB+AB+A'B+A'B")
=ABC'+ABC+ABC'+ABC+AB'C+A'BC+A'B'C
=ABC+ABC'+AB'C+A'BC+A'B'C

GENERAL POS TO STANDARD POS:-
Example 1:
(A+B+C)(A+B)
=(A+B+C)(A+B+CC")
=(A+B+C).(A+B+C)(A+B+C")
=(A+B+C).(A+B+C")

Example 2:

(A'+B+C).A

=(A'+B+C)(A+BB'+CC"
=(A'+B+C)(A+B+C)(A+B+C)(A+B'+C)(A+B'+C")

RULES FOR STANDARD SOP TO STANDARD POS:

« Consider each variables as 1.

+ Wrile the possible combinations.

« Write the left combinations.

« In the left combinations consider each variables as zero &write lhe sum
« The product of the sum terms Is lhe standard POS.

Example 12ABC+A'BC+A'B'C+A'B'C’
« Consider each variables as 1 i.e. A=B=C=1

e Possible combinations i.e.111+011+001+000
» Left combinations are

010=22A+B'+C
100 2A'+B+C
101=>A+B+C’
110=»A'+B'+C
POS 2 (A+B'+C)(A'+B+C)(A’+B+C')(A'+B'+C)=>Slandard POS

Example 2-»A'B'C'+AB'C+A'BC+ABC'+AB'C’

« Consider each variables as 1i.e. A=B=C=1
« Possible combinations i.e.000+001+011+110+100
s Left combinations are

0102»A+B'+C

101=2A+B+C’

111=2A'+B'+C’

POS2 (A+B'+C) (A'+B+C') (A'+B'+C")=Standard POS
RULES FOR STANDARD POS TO STANDARD SOP:-

® Consider each variables as 0.

» Write the possible combinations.

e Write the left combination.

¢ In the left combinations consider each variable as 1and write the product terms.
e Thesum of the product term is the standard SOP,

Example 1% (A’+B+C)(A+B+C)(A+B+C")(A+B'+C)(A+B'+C’)
« Consider each variable as 0i.e.=B=C=0
« Possible combinations i e (1+0+0)(0+0+0)(0+0+1)(0+1+0)(0+1+1)
« Left combinations are

101=ABC
1109ABC’
1119ABC
SOP=>»(AB'C)+(ABC")+(ABC)=>Standards SOP
Example 2% (A+B+C")(A'+B'+C")(A'+B'+C):
« Consider each variable as 0i.e. A=B=C=0
e Possible combinations I.e.(0+0+1)(141+1)(1+1+0)

« Left combinations are

000=2ABC

010=2>A'BC

011=>ABC

100=»ABC’

101=AB'C
SOP=(A'B'C)+(A'BC")+(A’BC)+(AB'C")+(AB'C)=»Standards SOP.

Q.1. Find the canonical SOP (minterm) for the following function.
Y (A.B) =A+B

Solution:

Y (A.B) =A+B
=A.1+B.1

=A (B+B') +B (A+A")

=AB+AB'+AB+A'B
=AB+AB+A'B

terms.

Q.2. Y=A+B'C express the function in canonical SOP & canonical POS.

Solution:

Y=A+B'C
=A(B+B)(C+C)+B'C(A+A")
=A(BC+BC‘+B‘C+B'C')+AB'C+A‘B'C
-ABC+ABC'+AB'C+AB'C'+AB'C'+A'B'C
-ABC+ABC'+ARC+AB'C'+A'B'C

Y=mjs+Me+Ms+My+My

Therefore Y=Ym (1,4,5,6,7)

» canonical pos (maxterm)

Y=A+BC
=(A+B)(A+C)
=(A+B+CC)(A+C+BB")
=(A+B'+C)(A+B'+C)(A+B+C)(A+B'+C)
=(A+B+C)(A+B'+C)(A+B'+C) [(A+B’+C)+ (A+B'+C)= (A+B'+C)]
Y=mgm;ms
Therefore Y=MNm (0, 2, 3)
3. Expand the function A+BC’+ABD'+ABCD to minterm & maxterm.
Solution:-
Y=A+BC'+ABD'+ABCD
=A(B+B")(C+C)(D+ D)+BC(A+A)(D+D’)+ABD'(C+C')+ABCD
=A[(BC+BC'+B'C+ B'C‘)(D+D')]+BC'(AD+AD’+A'D+A'D‘)+ABCD’+ABC'D’+ABCD
=A[BCD+ BC'D+B'CD+B'C’'D+BCD'+ BC'D'+B'CD'+B'C'D'|+ABC'D+ABC'D'+A'BC'D+A'B
C'D'+ABCD'+ABC'D'+ABCD
=ABCD+ABC’D+AB'CD+AB'C'D+ABCD'+ABC'D'+AB'CD'+AB’C'D'+A'BC'D+A'BC'D’
SOP=ym(4,5,8,9,10,11,12,13,14,15)
POS=Mm(0,1,2,3,6,7)

Q.4.Expand A(B'+A)B to maxterm & minlerm
Solution:

In SOP (maxterm):

Y=A(B'+A)B

=(A+0)(B'+A)(B+0)

=(A+BB')(B'+A)(B+AA")

=(A+B)(A+B")(A+B’)(A+B)(A'+B)

=(A+B)(A+B")(A'+B’)

Y=Mm(0,1,2) <maxterm(POS)

e The maxterm m3 is missing in the POS form, so the SOP form will contain only the
minterm m3.

In SOP (minterm):

Solution:

Y=A(B'+A)B
=ABB'+AAB
=0+AB [AND rules BB'=0 & AA=A]
=AB

Y=¥m(3) -?minterm(SOP)

Q.5. Expand the following expression to min terms & max lerms.
X+x(x+y)(y+2)

Solution:

F=X+X(X+Y)Y+2)

=X+ (XX +XY)(Y+2) [DISTRIBUTIVE LAW]

=X+ (X +XY)Y +2) [AND RULES XX=X]

X+ X1+ Y)Y +T) [OR RULES 1+Y'=1]

=X"+X(Y+2)

=X+ XY+ XZ

=X (Y+Y') (Z+77) +XY (Z+2') +XZ' (Y+Y')

=X (YZ+YZ'+Y'ZY'L) +XYZ4 XYL+ XYI'+XY'2'

=XYLXYT XY T4 XY T+ XYL+XY2 + XYZ + XYL’

=XYZaXYL + XY 24X Y L+ XYL+XYZ' + XY'T'

Y= 3M(0,1,2,3,4,6,7) MINTERM(SOP)

Y=(5)=»MAXTERM(POS)

KARNAUGH MAP OR K- MAP:-

- The K- map is a chart or a graph, composed of an arrangement of adjacent cells, each
representing a particular combination of variables in sum or product form.
- The K- map is systematic method of simplifying the Boolean expression.

IWO VARIABLE K- MAP:-
A two variable expression can have 2 = 4 possible combinations of the input variables A and B.

Mapping of SOP Expression:-
- The 2 variable K-map has 2’ = 4 squares. These squares are called cells.
- A'1'is placed in any square indicates that corresponding minterm is included in the output
expression, and a 0 or no entry in any square indicates that the corresponding minterm

does not appeaa in the expression for output.

0]
0 | AB AB
A 1 | AB | AB
Example:- B _
Map expression f= AB +
ABSolution:-
The expression
minterms isF = m; + m;
=m(1,2)
B
0 1
0 1
0 0 1
A 1 ’ 0 3

Mapping of POS Expression:-

Each sum term in the standard POS expression is called a Maxterm. A function in two variables

(A,B) has 4 possible maxterms, A+ B, A+B, A+BandA + B . They are represented as My, M,
M, and M respectively.

B
A 0 1
of 1
O|A+B|A+B
L R 3
1|A+B|A+B
The maxterm of a two variable K-map
Example:-
Plot the expression f= (A + B)(A' + B)(A'+ B')
Solution:-

Expression interms of maxterms is f = nM (0, 2, 3)

A 5 0 1
0 1

0] O 1
2 3

1| O 0

Example:-
Reduce the expression f = (A + B) (A + B')(A’ +B *) using

mappingSolution:-
The given expression in terms of maxterms is f = nm (0, 1, 3)
A g 0 1
o 1
o
1| 7 L] B
f=AB
JHREE VARIABLE K- MAP:- Example 2

 The number of cells in 3 variable K-map is eight, since the number of _
variables is three.

e The following figure shows 3 variable K-Map.
+ Examples 1:
Oout= AB

out= AB C . B C
Minterm= A BC Minterm= A B C
1 1 Numeric= 0 1 0

Numeric= 1
BC ; C f
A 00 0111/1L0 A 0 0111 ‘O

ololo]oflo olo]o]o |1
1 |lo]o[1']o 1 lo]lo]o|o
Out= ABC out= ABC

Out= ABC +ABC

A %D 011110

0 |0]O]O
AR
Numeric= 0
Minterm= A
Qut= &

0 pe
ol nlo
-

w
(g]

B8C BC
A 00 01 1 10 A 00 o1 11 10
xec | xoc'| xsc’| Ase A+B+C{A+B+TIA+B+C|As B
+
° g | @my [tmg | (mp Vo |y | ony o
4 L] ks L3 4 -] 7 L]
ABC | ABC | ABC | ABT
1 my | mg | tmy | tme |IWCI»{£;CK:&;CI%+C
(a) Minterms (b) Maxterms
BC
A 00 01 11 10
0 1 a 2
0 0 1 0 1
4 5 7 6
1 9 0 0 0

FOUR VARIABLE K-MAP:-

A four variable (A, B, C, D) expression can have 2* = 16 possible combinations af input
variables. A four variable K-map has 2* - 16 squares or cells and each square on the map
represents either a minterm or a maxterm as shown in the figure below. The binary number
designations of the rows and columns are in the gray code. The binary numbers along the
top of the map indicate the conditions of C and D along any column and binary numbers
along left side indicate the conditions of A and B along any row. The numbers in the top right
corners of the squares indicate the minterm or maxterm desginations.

SOP FORM
apSP oo 01 11 10
L] i 2
oo | ABED | ABCD | ABcD | ABCD
(my) (m,) (my) (my)
o1 | ABeB | ABEO | ABCD | ABCH
(rmy) (my) (my,) (mg)
12) T 14
11 | ABCO | ABCD | ABCD | aBCD
(M) | (myy) | (m,y) (my)
o L 1 10
10| ABCD | ABCD | ABCD | ABCD
() (my) {my,) (M)
SOP form
wco 00 01 " 10
[5] 1 3
A+B+C+D|A+B+C+D|A+B+C+D|A+B+T+D
00 -
w 1,
FOS FORM - 2 o~

3 0 7
o A+B+C+D|A+B+C+D |A+B+C+D|A+B4TsD
(Mg (My) (M)

2| [H] L] [
1" A+B+C+D|A+B+C+D |A+B+C+B|A+BsBaD
(L) Myy) (M) My

B] L]
10 A+B+C+D|AsB4C4D 1+a—c.b‘ l+a4c‘t;°
{"l’ W Nh’ (u|d

Minimization of SOP and POS E —
For reducing the Boolean expressions in SOP (POS) form the following steps are given below

Draw the K-map and place 1s (0s) corresponding to the minterms (maxterms) of
the SOP (POS)expression.

In the map 1s (0s) which are not adjacent to any other 1(0) are the isolated minterms
(maxterms). Theyare to be read as they are because they cannot be combined even into
a 2-square.

For Ihus)e 1s (0s) which are adjacent ta only one other 1(0) make them pairs (2
squares).

Fgr quads (4- squares) and octet (8 squares) of adjacent 1s (0s) even if they contain
some 1s (0s)which have already been combined. They must geometrically form a
square or a rectangle.

For any 1s (0s) that have not been combined yet then combine them into bigger squares if

possible.

Form the minimal expression by summing (multiplying) the product (sum) terms of all the
groups.

Example:-

Reduce using mapping the expressionf=gm(0,1,2,3,5,7,8,9,10,

12, 13)Solution:-

The given expression in POS form is f=n M (4, 6, 11, 14, 15) and in SOP form f=3 m (0,1, 2, 3,
5.7.89,

10,12,13)

AB o0 o1 1 10 AB~_00 O 11 10
y o & | 3 E []
ool 11| [T 7|k oo T T *
a .] L L] 4 s T
o1 i o}=D) oot
3 3 i) T4 3 (F | L) 1%
11 1 1 1" Lo} 7]
L] L] " 0l [- 1" o
1] 111 1 I 10 L]
tei = BD + AT + AD i =(A+B+DA+C+D)A+B+T)

(a) SOP K-map (b) POS K-map

The minimal SOP expression is fmin= BD + AC + AD

The minimal POS expression is fy,=(A+B+D)(A+C+D) (A+ B + C)
DON'T CARE COMBINATIONS:-

The combinations for which the values of the expression are not specified are called don't care
combinations oroptional combinations and such expression stand incompletely specified. The
output is a don‘t care for these invalid combinations. The dont care terms are denoted by d or
X. During the process of designing using SOP maps, each don't care is treated as 1 to reduce the
map otherwise it is treated as 0 and left alone. During the process of designing using POS maps,
each don't care is treated as 0 to reduce the map otherwise it is treated as 1 and left alone,

A standard SOP expression with don't cares can be converted into standard POS form by
keeping the don't cares as they are, and the missing minterms of the SOP form are written as
the maxterms of the POS form. Similarly, to convert a standard POS expression with don‘t cares
can be converted into standard SOP form by keeping the don't cares as they are, and the missing
maxterms of the POS form are written as the minterms of the SOP form.,

Example:-

Reduce the expressionf =3 m(1, 5,6, 12,13, 14) + d(2, 4) using

K- map.Solution:-

The given expression in SOP formisf=3m (1,5, 6,12, 13, 14) + d(2, 4)

The given expression in POS formisf=nM (0, 3,7, 8, 9, 10, 11,15) + d(2, 4)

(w]
AB 0 oo 01 11 110 AEG oo o1 11 10
[7] 1 a 2 =l [7] . %
00 T] X ool o 0 [x |
4 [T 5] £l - x &
o1 ¥ _1‘] k| o1 x s}
™) e (e | a4 {F-] L TR i]
11] | 14[' 1 1 11 0
8 o 11 10 [| | ke o
10 10| o] [] s} o]
_I-“: - BE . B + ACD Toin = (B + DA + BI(C « D)

(m) SOP K-map (bh) POS K-map

The minimal of SOP expression is fyn = BC + BD +ACD

The minimal of POS expression is f., = (B + D)(A + B) (C + D)

LECTURE NOTES

ON
DIGITAL ELECTRONICS & MICROPROCESSOR
5TH SEMESTER

DEPARTMENT OF ELECTRICAL ENGINEERING

Prepared by :
MR. ADITYA NARAYAN JENA
Lecturer in Electronics & Telecommunication Engineering.

PNS SCHOOL OF ENGINEERING & TECHNOLOGY
Nishamani Vihar, Marshaghai, Kendrapara

COMBINATIONAL LOGIC CIRCULT

A combinational circuit consists of logic gates whose outputs at any time are determined from only the
present combination of inputs.

A combinational circuit performs an operation that can be specified logically by a set of Boolean
functions.

It consists of an interconnection of logic gates. Combinational logic gates react 1o the values of the
signals at their inputs and produce the value of the output signal, transforming binary information from
the given input data to a required output data.

A block diagram of a combinational circuit is shown in the below figure.

The n inpui binary variables come from an exiernal source; the m output variables are produced by the
internal combinational logic circuit and go to an external destination.

Each input and output variable exists physically as an analog signal whose values are interpreted 1o be a
binary signal that represents logic land logic 0.

—
Combinatianal

Circuit

] OR;-
Digital computers perform a variety of information-processing tasks. Among the functions encountered
are the various arithmetic operations,
The most basic arithmetic operation is the addition of two binary digits. This simple addition consists of
four possible clementary operations: 0+ 0=0,0+1=1,1+0=1Land 1 + 1 =10.
The first three operations produce a sum of one digit, but when both augend and addend bits are equal o
I; the binary sum consists of two digits. The higher significant bit of this result is called a carry.
When the augend and addend numbers contain more significant digits, the carry obtained from the
addition of two bits is added to the next higher order pair of significant bits.
A combinational circuit that performs the addition of two bits is called a half adder.
One that performs the addition of three bits (two significant bits and a previous carry) is a full adder. The
names of the circuits stem from the fact that two half adders can be employed to implement a full adder.

HALF ADDER:-
This circuit needs two binary inputs and two binary outputs,
The input variables designate the augend and addend bits; the output variables produce the sum and
carry. Symbols x and y are assigned to the two inputs and S (for sum) and C (for carry) to the outputs,
The truth table for the half adder is listed in the below table.
The C output is | only when both inputs are 1. The 5 output represents the least significant bit of the
sum.
The simplified Boolean functions for the two outputs can be obtained directly from the truth table.

X 5 C

Truth Table
The simplified sum-of-products expressions are .
S=x'y+ Xy’
C= xy

The logic diagram of the half adder implemented in sum of products is shown in the below figure, It can

be also implemented with an exclusive-OR and an AND gate.

FULL ADDER:-

* A full adder is a combinational circuit that forms the arithmetic sum of three bits
* It consists of three inputs and two outputs. Two of the input variables, denoted by x and y , represent the
two significant bits 10 be added. The third inpwt, z , represents the carry from the previous lower

Truth Table
significant position,
Two outputs are necessary because the arithmetic sum of three binary digits ranges in value from 0 1o 3,
and binary representation of 2 or 3 needs two bits, The two outputs are designated by the symbaols § for
sum and C for carry

K-Map for full adder

The binary variable S gives the value of the least significant bit of the sum. The binary vanable C gives
the output carry formed by adding the input carry and the bits of the words.

The eight rows under the inpul variables designate all possible combinations of the three variables. The
output variables are determined from the arithmetic sum of the input bits. When all input bits are 0, the
output 1s 0

The S output 1s equal to | when only one input is equal to 1 or when all three inputs are equal to 1. The
C output has a carry of 1 if two or three inputs are equal to 1.

The simplified expressions are

S=x'y'z+x'yz' +xy'2" + xyz

C=xy+xz+yz
» The logic diagram for the full adder implemented in sum-of-products form is shown in figure.

Implementation of Full Adder in SOP form

Full adder using half adder

s Itcan also be implemented with two half adders and one OR gate as shown in the figure.

Half Adder

Implementation of Full Adder using Two Half Adders and an OR gate

HALF SUBTRACTOR: -
This circunl needs two binary imputs and [wo binary outpuls
Symibols x and ¥ are assagned 1o the two mputs and D (for dilference) and B (for bomow) o the outputs
The truth table for the hall subtracior is listed in the below able

Truth Table

The B output s | only when the mpuis are 0 and 1. The [output represenis the beast sigmiblicant b of
the subiractson
The subtraction operation s done by using the following rles as

()=t

(=] with borrow |;

1{=1;

BE|
The simplified Boolean functions for the two cutputs can be obtained directly from the truth (sble. The
simplified sum-of-products expressions are

D=x"y + xy" and B =x"y

B a wyeay :|'I.-EIT
Bzaly B

[he logic diagram of the hall adder implemented in sum of products s shown in the figure. i can be also
implemented with an exclisive-OR and an AND gate with one inveried inpat

FULL SUBTRACTOR. -
¢ A full subtracior s a combinational cercuit that forms the anthmetic sublraction operaton of three bits,
¢ It consists of three inputs and two outputs. Two of the mput variahles, denoted by x and v , represent the
two significant bis to be subtracied. The thad input, 2 , & subtracied from the resoll OF the frst

-
-
=

Lo I - - - -
[I = = = =
HOD D e D D
= SN e D s e D e
- - - I - Y

Truth Table
subtraction
¢ Two oulputs are necessary becauise (he anihmetic subtraction of three bnary digils ranges in viloe from
010 3, and binary representation of 2 or 3 needs two bits. The two outputs are designated by the symbols
D for difference and B for bomow.

The binary variable D gives the value of the least significant bit of the difference. The binary varable B
gives the outpal borrow formed during the subiraction process

W .
A o1l

W

]
i

D= x'y ren'y ouy renye B=w'pen'yeyz

K-Map for full Subtractor

¢ The cight rows under the input variables designate all possible combinations of the three variables. The
outpul vanabies are determined from the anthmetic subiracton of the mpui bits.
[he difference [becomes | when any one of the imput 5 lor all three imputs are equal ol and the
homow B & | when the inpul combination is (00 1) or (0 1 Bor (01 ordl 1 1)
¢ The umplificd expressions are
D=x'v'z+x've' + 3y’ +nyz
B=x"z+x"y+yr

>
=

' Implementation of Full Subtractor in SOP form

MAGNITUDE COMPARATOR -
¢ A magnitude comparator i1s a combinational circuit that compares two numbers A and B and determines

their relative magnitudes.
The following description is about a 2-bit magnitude comparator circuit.
The outcome of the comparison is specified by three binary variables that indicate whether A <B, A =
B,orA>B.
Consider two numbers, A and B, with two digits each. Now writing the coefficients of the numbers in
descending order of significance:

A= ﬂu

AoB=

By By
The two numbers are equal if all pairs of significant digits are equal Le. if and only if Al =Bl and A0 =
B0,
When the numbers are binary, the digits are either | or), and the equality of each pair of bits can be
expressed logically with an exclusive-NOR function as

x1=ABi+A'B)’
And x0=AoBo+Ao"Bo’

The equality of the two numbers A and B is displayed in a combinational circuit by an output binary
variable that we designate by the symbol (A = B).
This binary variable is equal to 1 if the input numbers, A and B , are equal, and is equal to 0 otherwise.
For equality to exist, all xi variables must be equal to 1, a condition that dictates an AND operation of all
variables:

(A=B)=xixo
The binary variable (A = B) is equal to | only if all pairs of digits of the two numbers are equal.
To determine whether A is greater or less than B, we inspect the relative magnitudes of pairs of
significant digits, starting from the most significant position. If the two digits of a pair are equal, we
compare the next lower significant pair of digits. If the corresponding digit of A is | and that of B is 0,
we conclude that A > B. If the comresponding digit of A is 0 and that of B is 1, we have A < B. The
sequential comparison can be expressed logically by the two Boolean functions

(A>B)=
AiB"+x1A0B% (A <B)
=A" B +x1A0'By’

=B

A>B | A<B | A

Bo

Truth Table

Logic Diagram of 2-bit Magnitude Comparator

Decoder

A decoder i1s a combinational circuit. It has n input and to a maximum m = 2n outputs. Decoder
1s identical to a demultiplexer without any data input. It performs operations which are exactly
opposite to those of an encoder

Block diagram

—_— —

Decoder

Examples of Decoders are following

Code converters

BCD to seven segment decoders
Nixie tube decoders

Relay actuator

2 to 4 Line Decoder

The block diagram of 2 to 4 line decoder is shown in the fig. A and B are the two inputs where D
through D are the four outputs. Truth table explains the operations of a decoder. It shows that
each output 1s 1 for only a specific combination of inputs

Block diagram Truth Table

Highest priority
input

- !

Inputs . Output
| D: D D

00
> Qutputs

A | B

! D 4 D 4

decoder |— D. J 0ol 1 10
0|1

1 _1

2todline ——D:

|B——-u .y

- | T -

Lowest priority
input

01
00

Logic Circuit

A B

11

&-—O utputs

Encoder

Encoder s & combinational cirowil which s designed 1o parform the mwverse opsaration of the
decoder. An encoder has n numibses of nput Bnes and m Pomibaer of owtpaut Bnes. An encochor
produces an m bit Enary code correspondeng o he dgital nput number. The encoder Bocapls
mn N repat digetal word and converts it o an m bt ancther digital word. Block diagram

nput =
limes |

—_—

Exampies of Encoders ane followeng

Priority encoders

Decimal 1o BCD encoder

Dctal 1o banary arvoockesr

Hoxadoecimal 1o bbinary encodorn
4 1o 2 Encoder

Let 4 1o 2 Encoder has four mputs Y;. Yo Yol Yo and two outputs A8 As
The block diagram of 4 o0 2 Encoder is shown in the followng figure

b
W'
i

Yo

Al any time, only one of these 4 inputs can be “1° in order o get the respecitive binary code al
e outpul. The Truth table of 4 1o 2 encoder is shown Bebow

Inputs Cutputs

From Truth table, we can write the Boolean functions for each output as
Al=¥Fi1+ ¥
Al = F3 4 ¥F1

We can implemeant the above two Boolean lunctons by using two input OR gales
The circuit diagram of 4 1o 2 encoder s shown in the following ligure

)

a5

L |

Tha abowve circuill diagram contains two OR gates. Thesse OR gates encode the four inputs
with two bits

Dctal to Binary Encoder

Octal to binary Encoder has eight inputs, Y7 1o Y, and three outputs A;, A& A,. Octal 1o binary
ancoder is nothing but 8 to 3 ancoder.

The block diagram of octal to binary Encoder is shown in the following figure.

At any time, only one of thesa eight inputs can ba 1" in order to gel the respective binary code
The Truth table of octal to binary encodar is shown balow.

Inputs Dutputs

From Truth table, we can write the Boolean functions for each output as
AZ=Y7 +Y6+Y5+V¥4

Al=Y7+¥Yo+¥Y3+¥2
Al=¥Y7 +¥54+¥I+¥1

We can implement the above Boolean functions by using four input OR gates

Y1

The above circuit diagram contains three 4-input OR gates. These OR gates encode the eight
inputs with three bits.

Multiplexer:-

Multiplexer i1s a combinational circuit that has maximum of 2" data inputs, ..n" selection lines and
single output line. One of these data inputs will be connected to the output based on the values of

selection lines

Since there are ,.n" scelection lines, there will be 2" possible combinations of zeros and ones. So,
each combination will select only one data input. Multiplexer is also called as Mux.

4x] Multiplexer
4x1 Muhiplexer has four data inputs Is, Iz, L & lo, two selection lines s) & soand one output Y.
The block diagram of 4x1 Multiplexer is shown in the following figure

4xl
Multiplexer

I

S1 S0

One of these 4 inpuis will be connected 1o the output based on the combination of inpuis present at

these two selection lines. Truth table of 4x1 Multiplexer is shown below.

Selection Lines Output

Y

From Truth table, we can directly write the Boolean function for output, Y as

Y=S1'SO'10+S1'SOI1+S1S012+S1S0I3Y =S 1'S0'T0+S1'S0I 1 +S1S0'12+S1S013
We can implement this Boolean function using Inverters, AND gates & OR gate. The circuit
diagram of 4x1 multiplexer is shown in the following figure.

Y

Applications of Multiplexer:

Multiplexer are used in various hields where multiple dala need o be transmitted using a single line, Following are some of
tha applications of multiplexers -

1. Communication system - Communication system is a set of system that enable communication like transmission
sysiem, relay and tributary station, and communication network. The efficiency of communication system can be
increased considerably using multiplexer. Multiplexer allow the process of transmitting diferent type of data such as
audio, video at the same time using a single transmission ling

Telephone network = In telephone network, multiple audio signals are integrated on a single liné for transmission with
the help of multiplexers. In this way, multiple audio signals can be solated and eventually, the desire audio signals
reach the intended racipients

Computer memory - Multiplexers are used to implement huge amount of memory into the computer, at the same time
reducas the number of copper lines required 1o connact the memory to other parts of the computer circult
Transmission from the computer system of a satellite - Multiplexer can be used lor the transmission of dala
signals from the computer system of a satelite or spacecralt to the ground system using the GPS (Global Positioning
System) satellites

De-Multiplexer

De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. It has
single input, ,n" selection lines and maximum of 2%utputs. The input will be connected to one of
these outputs based on the values of selection lines.

Since there are ,n" selection lines, there will be 2 possible combinations of zeros and ones. So,
each combination can select only one output. De-Multiplexer is also called as De-Mux.
Ix4 De-Multiplexer

Ix4 De-Multiplexer has one input I, two selection lines, s; & so and four outputs Y3, Yz, Y1 &Y.
The block diagram of 1x4 De-Multiplexer is shown in the following figure.

» Y3
1x4

De-Multiplexer

——> Y,
] —

—> Y;

$1 S

The single input 1" will be connected to one of the four outputs, Y3 to Yy based on the values of
selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown below.

From the above Truth table, we can directly write the Boolean functions for each output as

Selection Inputs Outputs

5 So Y2 ¥y

51501
s|s0l’
s1's01

s1's01'

We can implement these Boolean functions using Inverters & 3-input AND gates. The circuit

diagram of 1x4 De-Multiplexer is shown in the following figure.

Y

We can easily understand the operation of the above circuit. Similarly, you can implement 1x8 De-
Multiplexer and 1x16 De-Multiplexer by following the same procedure.

Applications of Demultiplexer:

1. Demultiplexer is used to connect a single source to multiple destinations. The main application area
of demultiplexer is communication system where multiplexer are used. Most of the communication
system are bidirectional 1.e. they function in both ways (transmitting and receiving signals). Hence,
for most of the applications, the multiplexer and demultiplexer work in sync. Demultiplexer is also
used for reconstruction of parallel data and ALU circuits.

Communication System - Communication system use multiplexer to carry multiple data like audio,
video and other form of data using a single line for transmission. This process makes the
transmission easier. The demultiplexer receives the output signals of the multiplexer and converts
them back to the original form of the data at the receiving end. The multiplexer and demultiplexer
work together to carry out the process of transmission and reception of data in communication
system.

ALU (Arithmetic Logic Unit) - In an ALU circuit, the output of ALU can be stored in multiple
registers or storage units with the help of demultiplexer. The output of ALU is fed as the data input
to the demultiplexer. Each output of demultiplexer is connected to multiple register which can be
stored in the registers.

Serial to parallel converter - A serial to parallel converter is used for reconstructing parallel data
from incoming serial data stream. In this technique, serial data from the incoming serial data stream
is given as data input to the demultiplexer at the regular intervals. A counter is attaching to the
control input of the demultiplexer. This counter directs the data signal to the output of the
demultiplexer where these data signals are stored. When all data signals have been stored, the output

of the demultiplexer can be retrieved and read out in parallel.

O o% o°
XA X R XS

LECTURE NOTES
ON
SEQUENTIAL
LOGIC CIRCUITS (Unit-3)

Prepared by
Er.Aditya Narayan Jena

Dept. of Electronics & Telecommunication Engg.

PNS SCHOOL OF ENGG. & TECH.

Nishamani Vihar,Marshaghai,Kendrapara

SEQUENTIAL LOGIC CIRCUIT

SEQUENTIAL CIRCUIT:-

* |tis a circuit whose output depends upon the present input, previous output and the sequence in which
the inputs are applied.

HOW THE SEQUENTIAL CIRCUIT IS DIFFERENT FROM COMBINATIONAL CIRCUIT? :-

* In combinational circuit output depends upon present input at any instant of time and do not use
memory. Hence previous input does not have any effect on the circuit. But sequential circuit has
memory and depends upon present input and previous output.

* Sequential circuits are slower than combinational circuits and these sequential circuits are harder to
design.

—-
Input :! C LC . Output

MEMORY

Clock I

[Block diagram of Sequential Logic Circuit]

o The data stored by the memory element at any given instant of time is called the present state of
sequential circuit.

IYPES:-
Sequential logic circuits (SLC) are classified as
(i) Synchronous SLC
(i) Asynchronous SLC
+ The SLC that are controlled by clock are called synchronous SLC and those which are not controlled by

a clock are asynchronous SLC.
* Clock:- A recurring pulse is called a clock.

Difference betleeen _ ,
combinational logic sequential logic

ckt ckt

FLIP-FLOP AND LATCH:-

A flip-flop or latch is a circuit that has two stable states and can be used to store information.

A flip-flop is a binary storage device capable of storing one bit of information. In a stable state, the
output of a flip-flop is either 0 or 1.

Latch is a non-clocked flip-flop and it is the building block for the flip-flop.

A storage element in digital circuit can maintain a binary state indefinitely until directed by an input
signal to switch state.

Storage element that operate with signal level are called latches and those operate with clock transition
are called as flip-flops.

The circuit can be made to change state by signals applied to one or more control inputs and will have
one or two outputs.

A flip-flop is called so because its output either flips or flops meaning to switch back and forth.

A flip-flop is also called a bi-stable multi-vibrator as it has two stable states. The input signals which
command the flip-flop to change state are called excitations.

Flip-flops are storage devices and can store 1 or 0.

Flip-flops using the clock signal are called clocked flip-flops. Control signals are effective only if they are
applied in synchronization with the clock signal.

Clock-signals may be positive-edge triggered or negative-edge triggered.

Positive-edge triggered flip-flops are those in which state transitions take place only at positive- going
edge of the clock pulse.

JUUL

Negative-edge triggered flip-flops are those in which state transition take place only at negative- going
edge of the clock pulse.

Types of FFs:-

Some common type of flip-flops include
a) SR (set-reset) F-F
b) D (data or delay) F-F
c) T (toggle) F-F and
d) JKF-F

IOR d SR-FF:
u
a
Inputs Outputs
R -3 Q Status
0] Last State | No Change
1 o 0 Resel
0 1 1 Set
Q 1 1 Forbidden Race

Figures : RS FlipFLop with NOR Gate.

In figure output of one NOR gates drives one of the input of the
other NOR gate. The S and R inputs are used to set and reset the flip flop
respectively,

Hotll: For the NOR gate , if any input of the NOR gate is ‘1" its output will
be 0 irrespective of other inputs.

Operation of RS FlipFLop
Case : WhenR=0andS=0 and Q=0, Q=1
- When S = 0, R = 0 and Q=0 ,
A Q=1 a ‘0’ comes out from the upper
a NOR gate corresponding to Q = 0.

Now the lower NOR gate has

both input 0' and hence a ‘1’ comes
out from the lower NOR pgate
corresponding to Q = 1.
[*] Hence when R= 0 , S =0 Flip Flop
() El remain in last state or No change State

Case 2: When R=0andS=1 and Q=0,Q=1

When S = 1, R = 0 and Q=0 , Q=1 a 0’ comes out from the upper
NOR gate corresponding to Q = 0.

Now the lower NOR gate has one input ‘0’ and other input as 1(Q=0
, S=1) ,hence a ‘0’ comes out from the lower NOR gate corresponding to Q

This Q = 0 is fed as input

=0
(0)
R o Q=1 to upper NOR gate making R =0
(0) and Q = 0, this time a “1” come
upper NOR gate.

Now the lower NOR gate
has both input as 1(Q=1 ,
(L)) S=1) ,hence a ‘0’ comes out from
=0 the lower NOR gate

ol 1 (0) corresponding to Q = 0.

This process repeats till
the output is fixed or settled .Hence at the end when R= 0, S =0 Flip Flop

out Q =1 and Q=0.
Hence when R= 0, S =1 Flip Flop goes in Set state

Case 3: WhenR=1and $=0 and Q=1,Q=0
When S = 0, R = 1 and Q=1, Q=0

R = ©) a * ‘0' comes out from the upper NOR
(1) gate corresponding to Q=0.
Now the lower NOR gate has both
input as 0' (Q=0, $=0) ,hence a ‘1’
comes out from the lower NOR gate
@ corresponding to Q = 1.
s a This Q = 1 is fed as input to
@ " upper NOR gate making R =1 and Q = 1

, this time a “0" come upper NOR gate.
Now the lower NOR gate has both input as 0(Q=0 , S=0) ,hence a ‘1’

comes out from the lower NOR gate corresponding to Q = 1.
This process repeats till the output is fixed or settled Hence at the

end when R=1, S =0 Flip Flop out Q =0 and Q=1.
Hence when R=1, S =0 Flip Flop goes in Reset state

Cau4:WhenR-1md8=o

and Q=1,0Q=0
If S=1and R~ 1a’0 comes

(4}
g 7 Q@ out of both NOR gates giving Q = Q
= 1. This is condition is forbidden.
2 a
- e

NAND Based SR-FF:-

s
Inputs Outputs
R S Q Status
1 1 Last State No Change
1} 1 0 Resel
1 0 1 Set
) 0 Forbidden Race
&
Truth Table SR Flip-Flop using NAND Gate

In figure output of one NAND gates drives one of the input of the
other NAND gate. The S and R inputs are used to set and reset the flip flop
respectively.

Note : For the NAND gate , if any input of the NAND gate is ‘0’ its output
will be 1 irrespective of other inputs.

Case 1:8=0, R =0Q =0, Q=1 (Race Condition)

When S = 1, R = 1 and Q=0 , Q=1
a '1" comes out from the upper NAND
gate corresponding to Q = 1.

Now the lower NAND gate has one
input ‘0’ and Other input as 1 and
hence a ‘1’ comes out from the lower
NAND gate corresponding to Q = 1.
Hence when R=0 , S =0 Flip Flop both
outputs try to become one , this
undefined or illegal or Forbidden
state. This condition is called as RACE condition.

Case 1:8=0,R =1Q =0, Q=1 (SET Condition)

When S =0, R = 1 and Q=0 , Q=1
a ‘" comes out from the upper NAND
gate corresponding to Q = 1.

Now the lower NAND gate has both
input ‘1’ hence a 0’ comes out from the
lower NAND gate corresponding to Q = 0.

This state remains as its , Hence when R=1 , 8 = 0 Flip Flop , output Q =
1 and Q = 0, and the state is called as Set State
Case 2 : 8=1 ,R =0 Q =1, Q=0 [RESET Condition)

WhenS=1, R=0and Q=1,
Q=0 a ‘l' comes out from the
upper NAND gate corresponding to
Q=1

Now the lower NAND gate
has both input ‘l' Jhence a ‘0’
comes out from the lower NAND
gate corresponding to Q = 1.This 1
is fed as input to upper gate , now
this time upper NAND gate both
input as 1 , due to which output is
0.

Now this output is fed as input to lower NAND gate, whose both
input are 0 , making output 1.This state remains as its , Hence when
R=0 , 8=1 Flip Flop , output Q = 0 and Q = 1, and the state is called as
Reset State

Case4: WhenR=1andS8=1 and Q=1,Q0=0

WhenS=1,R=1 and Q=1
Q=0 a ‘1' comes out from the
upper NAND gate corresponding to
Q=1.

Now the lower NAND gate
has both input ‘1' and hence a 0°
comes out from the lower NAND
gate corresponding to Q = 0,

Hence when R= 0 , S =0 Flip Flop
remain in last state or No change
State

Quiputs

Lasl Biale
1]
1
Forbiddan
Lasi Stale

Hanal
Bl
Race

Figure Clocked RS Flip-Flop

It is often required to set or reset the memory cell in synchronism
with a train of the pulse known as Clock. Such circuit is referred to as
clocked SR (set-reset flip-flop)

The clock is a square wave signal because the clock drives both
NAND and prevents S and R from controlling the latch,

Operation is as Follows

Case 1:8 =1, R=0 (Set Condition)

@ IfS=1andR = 0 the output of gate A = 0 and B = 1. Now with clock
=1,S=0,R=1 and flip-Mlop set Q = 1 and Q= 0, l.ec Set Condition

Case 2: 8 =0, R=1 (Reset Condition)

@ If S=0and R = 1 the output of gate A = 1 and B = 0. Thus with clock
=1, S=1, R = 0 and flipflop set Q = 0 and Q = 1. l.e Reset
Condition

Case 3 : 8 =1, R=1 (Illegal/Forbidden Condition)
With S = 1 and R = 1 the output of both gates will be 0 it is a
forbidden condition state or a race condition, I.e Illegal Condition or

Forbidden State

Case 4 : § =0 , R=0 (Last State Condition)
@ When both S = 0, R = 0 and clock = 1 the output A & B gate = 1 which
keep the flip-flop in last state. I.e Last State

Mo Change

No Changs

D-flipFlop:-

e D flip flop is actually a slight modification of the above explained clocked SR flip-flop.
From the figure you can see that the D input 1s connected to the S input and the

complement of the D input is connected to the R input.
¢ The D input is passed on to the flip flop when the value of CP is 1",

* When CP is HIGH, the flip flop moves to the SET state. If it is "0, the (lip flop
switches to the CLEAR state.
* As long as the clock input C = 0, the SR latch has both inputs equal to 0 and 1t can’t
change its state regardless of the value of D
e When C s 1, the latch is placed in the set or reset state based on the value of D,
If D =1, the Q output goes to 1.
If D =0, the Q output goes to (.

i — - .
c e
e | p——1

(@) Logic diagram

Truth Table:-

ﬂ'm'l

NC
NC

0

£
= @ 0 =)

JK FLIP-FLOP:-

The JK flip-flop can be constructed by using basic SR latch and a clock. In this case the outputs Q and
Q' are returned back and connected to the inputs of NAND gates.
This simple JK flip Flop is the most widely used of all the flip-flop designs and is considered to be a
universal flip-flop circuit.
The sequential operation of the JK flip flop is exactly the same as for the previous SR flip-flop with the
same “Set” and “Reset” inputs.
The difference this time is that the “JK flip flop” has no invalid or forbidden input states of the SR Latch
even when S and R are both at logic “1".

(The below diagram shows the circuit diagram of a JK flip-flop)

—L > 0
CLK —
K —ED—D“ Q

The JK flip flop is basically a gated SR Flip-flop with the addition of a clock input circuitry that prevents
the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level
e i

Due to this additional clocked input, a JK flip-flop has four possible input combinations, “logic 17, “logic
0", "no change” and “toggle”.

The symbol for a JK flip flop is similar to that of an SR bistable latch except the clock input.

-1J QrF
-1
—K al

(The above diagram shows the symbol of a JK flip-flop.)

Both the S and the R inputs of the SR bi-stable have now been replaced by two inputs called the J and
K inputs, respectively after its inventor Jack and Kilby. Then this equates to: J = Sand K=R.

The two 2-input NAND gates of the gated SR bi-stable have now been replaced by two 3-input NAND
gates with the third input of each gate connected to the outputs at Q and Q.

This cross coupling of the SR flip-flop allows the previously invalid condition of S = “1" and R = “1" state
to be used to produce a “toggle action” as the two inputs are now interlocked.

If the circuit is now “SET" the J input is inhibited by the “0" status of Q' through the lower NAND gate. If
the circuit is “RESET" the K input is inhibited by the “0" status of Q through the upper NAND gate. As Q
and Q' are always different we can use them to control the input.

Truth Table of JK-FF:-

Input Output Comment
J K Q Qpex
0 0 0 0 No change
0 0 1 1
0 1 0 0 Reset
0 1 1 0
1 0 0 1 Set
1 0 1 1
1 1 0 1 Toggle
1 1 1 0

* When both inputs J and K are equal to logic “1”, the JK flip flop toggles.
T FLIP-FLOP:-
e Toggle flip-flop or commonly known as T flip-flop.

* This flip-flop has the similar operation as that of the JK flip-flop with both the inputs J and K are shorted
i.e. both are given the common input.

L
- C

e Hence its truth table is same as that of JK flip-flop when J=K= 0 and J=K=1.So its truth table is as
follows.

Truth Table:-

_ — 4 Q

Ol

>0

T Q Qrext Comment
0 0 0 No change
1 1
1 0 1 Toggles
1 0

Race around condition in JK-FF:-

% For J-K flip-flop, if J=K=1, and if clk=1
for a long period of time, then Q output will toggle as long as CLK is high, which
makes the output of the flip-flop unstable or uncertain. This problem is called race
around condition in J-K flip-flop. This problem (Race Around Condition) can be

avoided by ensuring that the clock input is at logic “1” only for a very short time.

*It can be avoided by using Master-Slave JK-FF

*Also by using tp<At,where tp=width of clock pulse
and At is the Propagation delay.

MASTER-SLAVE JK FLIP-FLOP;-

The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in a
seriesconfiguration with the slave having an inverted clock pulse.

The outputs from Q and Q" from the “Slave” flip-flop are fed back to the inputs of the
“Master” with theoutputs of the “Master” flip flop being connected to the two inputs of
the “Slave” flip flop.

This feedback configuration from the slave’s output to the master’s input gives the
characteristic toggleof the JK flip flop as shown below.

The Master-Slave JK Flip Flop

Master | Slave
Flip-flop | Flip-flop
o I_ g Q I J Q2 -—()Q
Cx : > Clk
Res Q : K () —g

The input signals J and K are connected to the gated “master” SR flip flop which
“locks” the inputcondition while the clock (Clk) input is “HIGH" at logic level “1”.

As the clock input of the “slave” flip flop is the inverse (complement) of the “master”
clock input, the“slave” SR flip flop does not toggle.

The outputs from the “master” flip flop are only “seen” by the gated “slave” flip flop
when the clock inputgoes “LOW" to logic level “0”.

When the clock is “LOW”, the outputs from the “master” flip flop are latched and

any additionalchanges to its inputs are ignored.

The gated “slave” flip flop now responds to the state of its inputs passed over by the
“master” section.

Then on the “Low-to-High"” transition of the clock pulse the inputs of the “master” flip
flop are fed through to the gated inputs of the “slave” flip flop and on the “High-to-Low”
transition the same inputs are reflected on the output of the “slave” making this type of
flip flop edge or pulse-triggered.

Then, the circuit accepts input data when the clock signal is “HIGH", and passes the data

to the output on the falling-edge of the clock signal.
In other words, the Master-Slave JK Flip flop is a “Synchronous” device as it only passes
data with the timing of the clock signal.

COUNTER

+A counter is a sequential logic circuit which counts
binary numbers.

< There are two types of counters:
+Asynchronous counter or Ripple counter

< Synchronous Counters

+ In a Ripple Counters First FF is triggered by a
clk pulse and remaining FF are triggered by
normal or complement output of previous FF.

» In Synchronous Counters, a“ ‘the FFS are
trlggered by a common clk pulse.

< A counter that follows the binary number sequence is called a
binary counter (n-bit counter count from 0 to 2"-1)

between Asynchronous Vs Synch

Synchronous
counter

The propagation delay is very low.

Its operational frequency Is very high.

These are faster than that of ripple counters.
Large number of logic gates are required to design
High cosl.

Synchronous circuits are easy o design.

Standard logic packages available for synchronous.

TR 5

nous Coun

synchronous
counter

Propagation delay is higher than that of synchronous

counters.
The maximum frequency of operation is very low.
These are slow in operation.

Less number of logic gates required.

Low cosl.

Complex to design.

For asynchronous counters, Standard logic packages are

not available.

Counter found their applications in many digital electronic devices. Some of their

applications are listed below.
1- Frequency counters

2- Digital clocks

3- Analog to digital convertors.

4- With some changes in their design, counters can be used as frequency divider
circuits. The frequency divider circuit is that which divides the input frequency

exactly by ‘2",

5- In time measurement. That means calculating time in timers such as electronic
devices like ovens and washing machines.
6- design digital triangular wave generator by using counters.

Modulus of a Counter:-
*The no. of states a counter can count is called its

Modulus.

For eg,A MOD-5 Counter can count only 5 states.

* Modulus counters are used in digital computers.

A binary modulo-8 counter with three flip-flops, i.e., three stages, will produce an output pulse, i.e.,
display an output one-digit, after eight input pulses have been counted, i.e., entered or applied. This
assumes that the counter started in the zero-condition.

Asynchronous Decade Counter

Qa Qe Qc (g
Logic 1"] A A & +10
—— 3
— J Qs +—J QO +J Q— +—J Q—
1 CLK CLK CLK CLK
—* ew K ¢R K R K &R
Clock

A decade counter can count from BCD 0" to BCD *8".
A decade counter requires resetting to zero when the output count reaches the decimal value of 10, ie.
when DCBA = 1010 and this condition is fed back to the reset input.

A counter with a count sequence from binary “0000" (BCD = "07) through to “1001" (BCD = "9") is
generally referred to as a BCD binary-coded-decimal counter because its ten state sequence is that of a
BCD code but binary decade counters are more common.

This type of asynchronous counter counts upwards on each leading edge of the input clock signal
starting from 0000 until it reaches an output 1001 (decimal 9).

Both outputs Q. and Qp are now equal to logic “1" and the output from the NAND gate changes state
from logic “1" to a logic “0" level and whose output is also connected to the CLEAR (CLR) inputs of all
the J-K Flip-flops.

This signal causes all of the Q outputs to be reset back to binary 0000 on the count of 10. Once QA and
QD are both equal to logic “0" the output of the NAND gate returns back to a logic level “1" and the
counter restarts again from 0000. We now have a decade or Module-10 counter.

Il § ERRFAN

‘ Output bit Pattern .
Clock ' Decim al

C ount alue

QB

=

-
"

-
-

-

!

-

Counter Resets its OQutputs back to Zero

4-bit Ripple Counter:-

Ans. 4-bit binary asynchronous or serial or ripple counter

- | N))
J—l_-—c | l—-c»' -L—ﬂ* ‘—L—qb' |

Fig. Shows a 4bit binary asynchronous counter,

It uses four negative edge triggered JK flip-flop. All the flip-flop will
operate in the toggle mode because there J and K input are tied to Vee,
The clock pulse are applied to the flip-flop A. The output of flip-flop A
drives clock input of flip-flop B, the output of flip-flop B drives clock
input of flip-flop C and the output of flip-flop C drives clock input of flip-
flop D. Since all flip-flop are negative edge triggered flip-flop they require
a transition of 1 to 0 at their clock input to toggle or change the state.

Clock D C B A Count

O(Intially)| O 0 0 0 1
1 0 0 0 1 2
2 0 0 1 0 3
3 0 0 1 1 4
a4 0 1 0 0 5
5 0 1 0 1 6
6 0 1 1 0 7
4 0 1 1 1 8
8 1 0 0 0 B
9 1 0 0 1 10
10 1 0 1 0 11
11 1 0 1 1 12
12 1 1 0 0 13
13 1 1 0 1 14
14 1 1 1 0 15
15 1 1 1 1 16

| 16 | 0 | 0 | 0 I 0 i 17(0) |

Truth Table for 4 bit Aysnchronous Counter

Timing diagram:-

‘;'J!s|wou]ow'llumoluuulmcoloim IOIlDIGl“I ‘NOI IDO'-I lU‘QI |DI‘II||G)I 'Il0|| !HOI 11|||coou

0 1 2 3 4 5 8 7 a -] 10 1" 12 13 14 15 0

Timing diagram
Operation of Counter
Initially all the flip-flop are cleared by using a common low clear
signal. Therefore
DCBA = 0000
On the first clock pulse A flip-flop will toggle from 0 to 1 this will
not trigger B flip-flop because it requires a change in 1 to 0 in A.
Therefore B remain in last state and since B does change its state also C
and D remain in last state. Hence on the first clock pulse we get output
as,
DCBA = 0001
On the second clock pulse A flip-flop again toggles from 1 to 0. This now
triggers B flip-flop, Now B FlipFlop toggles from O to 1. This will not affect
C flip-flop because C flip-flop requires a change of 1 to 0 in B flip-flop.
Therefore C remains 0 and so is D flip-flop. Hence on 2™ clock pulse we
get
DCBA = 0010.
On the 3™ clock pulse A flip-flop changes from O to 1, B flip-flop remains
at 1 and C and D flip-flop remain at O therefore,
DCBA = 0011.
On 4™ clock pulse A flip-flop changes from 1 to 0 therefore B flip-flop
now changes from 1 to 0. Now C flip-flop is triggered which will change
from O to 1 but this will not effect D because it requires a change from 1
to 0 in C flip-flop. Hence D remains 0. Therefore or 4™ clock pulse we get,
DCBA = 0100.
Thus it is observed that A flip-flop toggles with every clock pulse it
receives. B flip-flop toggles whenever A flip-flop changes from 1 to 0.
C flip-flop toggles whenever B flip-flop changes from 1 to 0 and D
flip-flop toggles whenever C changes from 1 to 0.

Hence on 15" clock pulse we get DCBA = 1111. On the next clock
pulse A flip-flop changes from 1 to 0, B flip-flop change from 1 to 0.
Therefore C flip-flop changes from 1 to 0. Hence D changes from 1 to 0,
therefore all flip-flop are cleared again & we get,

DCBA = 0000

Thus this counter can count from O to 15 i.e. totally 16 count (or
states). The number of discrete states through which the counter can
progress on the application of pulse is given by 2® where n= number of
flip-flop used into the counter. If we connect 5 flip-flop the counter will
progress through 00000 to 11111 i.e. 32 counts (0 to 31).

Synchronous counter

* A 4-bit synchronous counter using JK flip-flops is shown in the figure.
* In synchronous counters, the clock inputs of all the flip-flops are connected together and are triggered
by the input pulses. Thus, all the flip-flops change state simultaneously (in parallel).

s Q Ay
—<P
Count enable X
3 4 Q As
O
X
7] Ay
+—F-
K
J @ Ay
—
L3
‘]D— To next stage

(&

The circuit below is a 4-bit synchronous counter.

The J and K inputs of FFO are connected to HIGH. FF1 has its J and K inputs connected to the output
of FFO, and the J and K inputs of FF2 are connected to the output of an AND gate that is fed by the
outputs of FFO and FF1.

* A simple way of implementing the logic for each bit of an ascending counter (which is what is depicted
in the image to the right) is for each bit to toggle when all of the less significant bits are at a logic high
state.

* For example, bit 1 toggles when bit 0 is logic high; bit 2 toggles when both bit 1 and bit 0 are logic high;
bit 3 toggles when bit 2, bit 1 and bit 0 are all high; and so on.

« Synchronous counters can also be implemented with hardware finite state machines, which are more
complex but allow for smoother, more stable transitions.

REGISTERS

INTRODUCTION:-

* The sequential circuits known as register are very important logical block in most of the digital systems.

* Registers are used for storage and transfer of binary information in a digital system.

» A register is mostly used for the purpose of storing and shifting binary data entered into it from an
external source and has no characteristics internal sequence of states.

¢ The storage capacity of a register is defined as the number of bits of digital data, it can store or retain.

 These registers are normally used for temporary storage of data.

BUFFER REGISTER:-

* These are the simplest registers and are used for simply storing a binary word.

* These may be controlled by Controlled Buffer Register.

« D flip - flops are used for constructing a buffer register or other flip- flop can be used.
* The figure shown below is a 4- bit buffer register.

x,L sz Xof X9
D, Q| - Dz 02 — Da Qa +_' au D‘ Q‘

-
> FF, > FF, —p> FF, rr FF,

- - -+
Logic diagram of a 4-bit buffer register.

+ The binary word to be stored is applied to the data terminals.
* When the clock pulse is applied, the output word becomes the same as the word applied at the input
terminals, i.e. the input word is loaded into the register by the application of clock pulse.
* When the positive clock edge arrives, the stored word becomes:
Q4 Q3 Q2 Q1= X4 X3 X2 X1
or Q=X.
This circuit is too primitive to be of any use.

Types of Shift Registers:-

A number of FFs connected together such that dala may be shifled into and shifted out of them is called
a shift register.
Data may be shifted into or out of the register either in serial form or in parallel form.
There are four basic types of shift registers
1. Serial in, serial out
2. Serial in, parallel out
3. Parallel in, serial out
4. Parallel in , parallel out

SERIAL IN, SERIAL OUT SHIFT REGISTER:-

This type of shift register accepls data serially, i.e., one bit at a time and also outputs data serially.

The logic diagram of a four bit serial in, serial out shift register is shown in below figure:

In 4 stages i.e. with 4 FFs, the register can store uplo 4 bits of data.

Serial data is applied at the D input of the first FF. The Q output of the first FF is connected to the D
input of the second FF, the output of the second FF is connected to the D input of the third FF and the
Q outpul of the third FF is connected to the D input of the fourth FF. The data is outputted from the Q
terminal of the last FF.

When a serial data is transferred to a register, each new bit is clocked into the first FF at the positive
going edge of each clock pulse.

The bit that is previously stored by the first FF is transferred to the second FF.

The bit that is slored by the second FF is transferred to the third FF, and so on.

The bit that was stored by the last FF is shifted out.

A shift register can also be constructed using J-K FFs or S-R FFs as shown in the figure below.

Borial input O—-— D, Q, D, Q, D, Q, D, Q‘_M"

SERIAL IN, PARALLEL OUT SHIFT REGISTER:-

« In this type of register, the data bits are entered into the register serially, but the data stored in the
register serially, but the stored in the register is shifted out in the parallel form.

+ When the data bits are stored once, each bits appears on its respective output line and all bits are
available simultaneously, rather than bit — by — bit basis as in the serial output.

e The serial in, parallel out shift register can be used as a serial in, serial out shift register if the output is
taken from the Q terminal of the last FF.

« The logic diagram and logic symbol of a 4 bit serial in, parallel out shift register is given below.

QA O‘ QC Qn
Data input | I I _T
O'_p_-_ D1_ QA Dz QB 03 Qc - D. QD
> FF, > FF, > FF, > FF,
(- L
CLK
[
(a) Logic diagram
Data input
SRG4
CLK >
' 111
Q, Q, Q. Q,
(b) Logic symbol

A 4- bit serial in, parallel out shift register

PARALLEL IN, SERIAL OUT SHIFT REGISTER:-

For parallel in, serial out shift register the data bits are entered simultaneously into their respeclive
stages on parallel lines, rather than on bit by bit basis on one line as with serial data inputs, but the data
bits are transferred out of tha register serially, i.e., on a bit by bit basis over a single line.
The logic diagram and logic symbol of 4 bit parallel in, serial out shift register using D FFs is shown
below.
There are four data lines A, B, C and D through which the data is entered into the register in parallel
form.
The signal Shift [LOAD allows

1. The data to be entered in parallel form into the register and

2. The dala to be shifled out serially from terminal Q.
When Shift /LOAD line is HIGH, gates G1, G2, and G3 are disabled, but gates G4, G5 and GE are
enabled allowing the data bits to shift right from one stage tc next.
When Shift [LOAD line is LOW, gates G4, G5 and G6 are disabled, whereas gates G1, G2 and G3 are
enabled allowing the data input to appear at the D inputs of the respective FFs.
When clock pulse is applied, these data bits are shifted to the G output terminals of the FFs and
therefore the data is inputted in one step.
The OR gate allows either the normal shifling operation or the parallel data entry depending on which
AND gates are enabled by the level on the Shift /LOAD input.

oA ou eC
finityLoad
-
G,
=0 O D, G D, Q Q=
l—:- FF, Jj:- FF, r FF, b FF,
CLK o - B .
(a) Logic diagram
CLLT
itvLoad
SAG4 | Data out
oK | i

(b} Logic symbaol
A 4- bit parallel in, serial out shift register

PARALLEL IN, PARALLEL OUT SHIFT REGISTER:-

* In a parallel in, parallel out shift register, the data entered into the register in parallel form and also the
data taken out of the register in parallel form. Immediately following the simultaneous entry of all data
bits appear on the parallel outputs.

* The figure shown below is a 4 bit parallel in parallel out shift register using D FFs.

* Data applied to the D input terminals of the FFs.

» When a clock pulse is applied at the positive edge of that pulse, the D inputs are shifted into the Q
outputs of the FFs.

* The register now stores the data.

» The stored data is available instantaneously for shifting out in parallel form.

T: 0] Tf T_D
D Q4 40 Q- D Qi D Q4

> —+ > >

(o]
-
X

0
‘

-

oaq, dQ, da, da,

Logic diagram of a 4 — bit parallel in, parallel out shift register

UNIT-4:
8085 MICROPROCESSOR

The processor of a micro-computer is called microprocessor.

It is a programable logical device which takes data as input and process
the data according to the instruction given and gives output .

Micro computers is a very small computer assembled to do a specific
task.

BLOCK DIAGRAM OF A MICROPROCESSOR
COMPUTER

CONTROL UNIT

MICROPROCESSOR

ALLJW;: Arithmetic and logical unit

e |t performs all kinds of arithmetic and logical operation according to the
instruction and data given to it .

Register Array:-

e Register stores data
e Register array means group of registers

e |t stores input data and result for temporary period to be used by the
ALU .

Control Unit :-

e |t gives the control signal to the ALU and register array so that all the
works are done in the proper co-ordination

Application of Microprocessor:-

e Domestic Application

e Industrial Application

e Automobiles Application

e Packing Industries application
e Inrobotics

Difference between microcomputer and
MICroprocessor

Micro-Computer Microprocessor
e Microcomputer is a very small computer e The processor of a
assembled to do a specific task . microcomputer is
called microprocessor
Input Microprocessor Output
Device "~ (AU +Registeraray + Device
Control unit)
Memory
CONTROL UNIT
MICROPROCESSOR
e Micro-computer is a system e Microprocessor is a
component of the
system

Evolution of microprocessor:-

e 1In 1971, Intel corporation of USA developed first microprocessor called
“Intel 4004”.

e It was unit processor that means at a time 4 bits of data could be
handled by the processor.

In the year 1971 again another 4 bit processor was developed named
“Intel 4040”

In 1972 first 8 bit processor was developed by Intel corporation named
“Intel 8008”. It was using P-MOS technology. So the speed was very
low.

In 1973 another 8 bit processor was developed by Intel corporation
named “Intel 8080”. It was faster because N-MOS technology was used.
In 1975 one very successful 8-bit processor was developed by Intel
corporation named “Intel 8085”. It was using N-MOS technology and
single power supply.

1978, first 16 bit processor was developed named “Intel 8086"

In subsequent years many other companies took to develop
microprocessor, such as zilogs, Motorola ,Celeron, Fairchild etc.

The other 16 bit processors are 80186, 80286, 80386, 80486 etc. 280,
2800, PI, PII, PIII, PIV etc

After successful development of 16 bit processor 32 bit processor was
developed by many companies.

Latest in market 64 bit processor are using this i-series such as i3, i5, i7,
i9.

Word Length :-

e The data handling capacity of any processor is called word length of

processor.

e Example:- Intel 8085 is a 8 bit processor. So its wordlength is = 8 bit

Intel 4004 is a 4 bit processor so its wordlength is = 4 bit.

Intel 8085:-

1al f f Intel -

It is a 8 bit processor.

It uses N-MOS technology.

It has 40 pins.

It is a DIP chip (Dual in-line package).
It uses frequency of 3mHz.

It has a clock duration of 330 nsec.

1 1 107¢ 1 _
= = =—% 10 6
3mhz 3x102 3 3

=0.33

=330 Nano second

e |t uses +5v power supply.

BUS ARCHITECTURE OF INTEL 8085
BUS:-

e |n a processor bus means no. of parallel line used for the

x 10 sec

transportation of address, data and control signals
e This transportation is done from the processor to the /0O device

and memories
e There are 3 kinds of buses in Intel 8085.

» Address bus

» Data bus

» Control bus

8085
MPU

Ais
Ag

Address Bus

N/

D7
D6

<

e

Real Word

Memory Input
Qutput
i A | e
\Iq—b Data Bus
—_— Control Bus

a) Address bus:-

It is used to carry the address of a particulars location in

memory or |/O device.
In intel 8085, the address bus is of 16 bit circle

It can allocate 64KB of memory location.

=> 216 = 210 * 26
=>64 x 1 KB = 64 KB.

The size of address bus gives the information of memory
allocation capacity.

(210 = 1KB)

e The address line of address bus starts with Agand finishes with
A15 .
e The address bell is unidirectional.

b) Data bus:-

e The data bus carries the data from processes to I/O devices and
memory

e InIntel 8085 the data bus is 8 bit wide i.e. Doto Ds.

e The data bus size gives the information of data handling
capacity or word length of the processor

e The data bus is always bi-directional.

c) Control bus:-

e This is also unidirectional
e |t carries the control signals for data address bus.

PIN CONFIGURATION OF INTEL 80385

8085 Pin Diagram

Crystal Imput | X, —{ Vee
! X; —p{]2 }¢— HOLD
Reset out -—{]3 j—p HLDA S5sy
g SOD - {]4 = CLK (out) T'mmg and
Serical I/0 | SID —p{5 \¢— Reselin Control signals
T S Trap -4—{|6 ja¢— Ready
RST 7.5 —pil7 Tt 1O/
Interrupts RST6.5 w18 b8y
RST 5.5 —p{|9 - Vpp
INTR —p{]10 31— RD
S INTA 4—{]11 b= WR
AD, -p|12 1 Sp S —
AD, {13 Ay
AD, {14 S Ay
Address Data AD, <api]15 e Agy
Bus AD, -ami]16 Ay Address
AD; -ap{{17 24— Ay Buss
ADg <18 » A
AD; a»i|19 Ay
Vss {120 » Ay —

. The address bus size is 16 bit wide i.e. Apto Aisand data bus
size is 8 bot wide i.e. Do to Dy.

e The total address bus can be divided into 2 groups i.e. lower
order address bus Apto A7 higher order address bus Asto A1s

e |n multiplying the lower order address bus is mixed with data
bus to AD bus.

e This is done to reduce the number of pins in the chip.

ADo—ADy:-
e These pins are bidirectional pins
e These are address and data bus lines
e Through these pins lower order address as well as data go.

Ag— Ass -
e These are output pins
e These pins carry higher order address
e The lower order address goes through AD bus and higher order

address goes through Ag— A5, they combine and make the full
address.

ADo— AD~

+ Full Address

As - Ass

ALE (Address latch Enable) :-

e This is an output pin

e When this plan goes high, the lower order address is mixed
with higher order address and finally the data goes from the AD
bus to the memory location.

10/ M

e This is an output pin

When this pin goes high the processor is commuting with IO
device using its buses.

But when this pin goes low processor is communicating with
memory.

This is a output pin.

This is an active low pin/signal.

When these pin. Goes low the processor reads the data from IO
device or memory

It is an output pin

This is an active low pin/signal

When these pin goes low the processor writes the data into the
|/O device or memory.

Interruption means disturbing the processor for a short
duration.

In Intel 8085 there are 5 interrupt lines, they are TRAP, RST 7.5,
RST 6.5, RST 5.5 and INTR

All these are active high pins

TRAP has the highest priority and INTR priority

TRAP * HIGH
RST 7.5
RST 6.5
RST 5.5
INTR v LOW

These are all input pins

The interrupt which can be avoided are called maskable
interrupts those are RST 7.5, RST 6.5, RST 5.5 AND INTR
Those interrupts which cannot be avoided are called non-
maskable interrupt, i.e. TRAP is the non — maskable interrupt.

INTA;- (Interrupt acknowledgement
e |tis an output pin.
e |tisan active low signal
e When this pin goes low, the processor tells that it has received
and interrupt request

HOLD :-

o Thisis an input pin, when this is high, the external devices
request to the processor for the use of busses (address bus and
data bus)

HLDA:-

o It stands for HOLD Acknowledgement

e When this pin goes high processor tells that, it has received the
whole request and the control over the busses is given to the
device as soon as the current work is complete.

e Thisis an input and active low pin

e |t resets the PC 20 and it also resets interrupt enable lines and
HLDA flip flops.

RESET OUT:-

o Itis an output and active high pin
o When this goes high the CPU is in reset condition

X2 & X7:-
« These are external terminals connected to the crystal oscillator

to produce a suitable clock for the operation of
microprocessor.

SOD:-
Serial Output Data
e The 7™ bit of the accumulator is placed on SOD line

SID:-

o Itis adata line for serial input

« the data on this line is loaded into the 7" bit of the

accumulator.

READY:-

e Itisaninput pinand Itis used by the processor to sense
whether the peripheral is ready or not for the data transfer.

So & Si:-

e These are status signals to let the users know that a processor

is doing what kind of work.

S1 SO
0 0 HLT
0 1 WRITE
1 0 READ
1 1 FETCH
+Vcci-
e 5V Supply

Clk (out):-

o Clock signal

Vss:-

e Ground

. 3085 MICROPROCESSOR ARCHITECTURE

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and uses +5
V for power. It can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit and
address bus width is 16-bit, thu« it can address 2'® = 64 KB of memory. The internal
architecture of 8085 is shown *

lf"&”l"l" Iy 1

SERIAL I/ O CONTROL

INTERRUFT CONTROL

1 et S 1 Y

AL [||

ACCUMU. " mmmth. MULTIPLXER
um TEMP REG REGISTER g
K Wis)
. E | TEMP REG.
G
| BREG(S5) CREUTY)
” Ul FLIP FLOPS : o EREG(S)
ARITHEMETIC g | BREGH) LREG(8)
mt“ﬂ{nn E | _STACK POINTER (18]
=l %) Le 1 | TROGRAM COUNTER(14)
_Ef" M. .
e e
p TIMING AND CONTROL
CLE ADDRESS BUFFER (DATA / ADDRESS
#r'“ 'Y BUFFER (8)
lL l snn‘s nl
n.:m RDWR ALE * * 10/M o S :;,;'E;,“‘ ann-_';t*g ADDRESS
! Internal Architecture of 8085
Arithmetic and Logic Unit

The ALU performs the actual numerical and logical operations such as Addition (ADD),
Subtraction (SUB), AND, OR etc. It uses data from memory and from Accumulator to
perform operations. The results of the arithmetic and logical operations are stored in the
accumulator.

Registers

The 8085 includes six registers, one accumulator and one flag register, as shown in Fig. 3.
In addition, it has two 16-bit registers: stack pointer and program counter. They are briefly
described as follows.

The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C,
D, E, H and L. they can be combined as register pairs - BC, DE and HL to perform some

16-bit operations. The programmer can use these registers to store or copy data into the
register by using data copy instructions.

ACCUMULATOR A (8) Inm-. me'ﬁk 1
. - I = — -
D 8 E (8)
H (8) L (8)
Stack Pointer (SP) (16)
Program Counter (PC) (16)
Data| Bus Addrezs Bus
' 8 Lines Bidirectional 16 Lines unidirectional
v

' Register organisation
Accumulator

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit
data and to perform arithmetic and logical operations. The result of an operation is stored in
the accumulator. The accumulator is also identified as register A.

Flag register

The ALU includes five flip-flops, which are set or reset after an operation according to data
condition of the result in the accumulator and other registers. They are called Zero (Z),
Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags. Their bit positions in the
flag register are shown in Fig. 4. The microprocessor uses these flags to test data conditions.

D Ds Da Ds Dz D1 Do
s Z AC P CY
Flag register

For example, after an addition of two numuers, if the result in the accumulator is larger than
8-bit, the flip-flop uses to indicate a carry by setting CY flag to 1. When an arithmetic
operation results in zero, Z flag is set to 1. The S flag is just a copy of the bit D7 of the
accumulator. A negative number has a 1 in bit D7 and a positive number has a 0 in 2’s
complement representation. The AC flag is set to 1, when a carry result from bit D3 and
passes to bit D4. The P flag is set to 1, when the result in accumulator contains even number
of Is.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a
memory pointer. The microprocessor uses this register to sequence the execution of the
instructions. The function of the program counter is to point to the memory address from
which the next byte is to be fetched. When a byte is being fetched, the program counter is
automatically incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory
location in R/W memory, called stack. The beginning of the stack is defined by loading 16-
bit address in the stack pointer.

Instruction Register/Decoder

It is an 8-bit register that temporarily stores the current instruction of a program. Latest
instruction sent here from memory prior to execution. Decoder then takes instruction and
decodes or interprets the instruction. Decoded instruction then passed to next stage.

Control Unit

Generates signals on data bus, address bus and control bus within microprocessor to carry
out the instruction, which has been decoded. "

INSTRUCTION SET AND EXECUTION IN 8085

Based on the design of the ALU and decoding unit, the microprocessor manufacturer
provides instruction set for every microprocessor. The instruction set consists of both
machine code and mnemonics.

An instruction is a binary pattern designed inside a microprocessor to perform a specific
function. The entire group of instructions that a microprocessor supports is called
instruction set. Microprocessor instructions can be classified based on the parameters such
functionality, length and operand addressing.

Classification based on functionality:

I. Data transfer operations: This group of instructions copies data from source to
destination. The content of the source is not altered.

II. Arithmetic operations: Instructions of this group perform operations like addition,
subtraction, increment & decrement. One of the data used in arithmetic operation is
stored in accumulator and the result is also stored in accumulator.

III. Logical operations: Logical operations include AND, OR, EXOR, NOT. The
operations like AND, OR and EXOR uses two operands, one is stored in
accumulator and other can be any register or memory location. The result is stored
in accumulator. NOT operation requires single operand, which is stored in
accumulator.,

IV. Branching operations: Instructions in this group can be used to transfer program
sequence from one memory location to another either conditionally or
unconditionally.

V. Machine control operations: Instruction in this group control execution of other
instructions and control operations like interrupt, halt etc.

Classification based on length:

I. One-byte instructions: Instruction having one byte in machine code. Examples are

depicted in Table 2.
I. Two-byte instructions: Instruction having two byte in machine code. Examples are
depicted in Table 3
II. Three-byte instructions: Instruction having three byte in machine code. Examples
are depicted in Table 4.
. Examples of one byte instructions
Opcode Operand Machine code/Hex code
MOV A, B 78

ADD M 86

Sxamples of two byte instructions

Opcode Operand | Machine code/Hex code | Byte description
MVI1 A, 7TFH 3E First byte
TF Second byte
ADI OFH Cé First byte
OF Second byte

" Examples of three byte instructions

Opcode | Operand | Machine code/Hex code | Byte description
JMP 9050H C3 First byte
50 Second byte
90 Third byte
LDA 8850H 3A First byte
50 Second byte
88 Third byte

Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called addressing.
The various formats for specifying operands are called addressing modes. The 8085 has the
following five types of addressing:

I. Immediate addressing
II. Memory direct addressing
III. Register direct addressing
IV. Indirect addressing
V. Implicit addressing

Immediate Addressing:

In this mode, the operand given in the instruction - a byte or word — transfers to the
destination register or memory location.

Ex: MVI A, 9AH

e The operand is a part of the instruction.
e The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and register.
The memory location address is given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the accumulator.

Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to
destination register.

Ex: MOV B, C

It copies the content of register C to register B.

Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory location.
Ex: MOV A M

Here the data is in the memory location pointed to by the contents of HL pair. The data is
moved to the accumulator.

Implicit Addressing
In this addressing mode the data itself specifies the data to be operated upon.
Ex: CMA

The instruction complements the content of the accumulator. No specific data or operand is
mentioned in the instruction.

INSTRUCTION SET OF 8085

Data Transfer Instructions:

Opcode Operand Description
Copy from source to destination
MOV Rd, Rs This instruetion copies the contents of the source
M, R register into the destination register; the contents of
Rd, M the source register are not altered. If one of the operands is a

memory location, its location is specified by the contents of
the HL registers.
Example: MOV B, C or MOV B. M

Move immediate B-bit
MWV1 Rd, data The 8-bit data is stored in the destination register or
M, data memory, If the operand is a memory location, its location is
specificd by the contents of the HL registers.
Example: MVI B, 57 or MVI1 M, 57

Load accumulator

LDA 1 6-bit address The contents of a memory location, specified by a
1 6-bit address in the operand, are copied to the accumiilator.
The contents of the source are not altered.
Example: LDA 2034 or LDA XYZ

Load accumulator indirect

LDAX 1B/ Reg. pair The contents of the designated register pair point to a memaory
location. This instruction copies the contents of that memory
location into the accumulator. The contents of either the
register pair or the memory location are not altered.
Example: LDAX B

Load register pair immediate

L.XI1 Reg. pair. 16=hit data The instruction loads 16-bit data in the register pair
designated in the operand.
Example: LXI H, 2034

Load H and L registers direct

LHLD 16-bit address The instruction copies the contents of the memory location
pointed out by the 16-bit address into register L. and copies
the contents of the next memory location into register H. The
contents of source memeory locations arc not altered.
Example: LHLD 2040

Store accumulator direct

STA 16-bit address The contents of the accumulator are copied into the memory
location specified by the operand. This is a 3-byte
instruction, the second byte specifies the low-order address
and the third byte specifies the high-order address.
Example: STA 4350 or STA XYZ

Store accumulator indirect

STAX Reg. pair The contents of the accumulator are copied into the memory
location specified by the contents of the operand (register
pair). The contents of the accumulator are not altered.
Example: STAXB

Store H and L registers direct

SHLD 16-bit address The contents of register L are stored into the memory location
specified by the 16-bit address in the operand and the contents
of H register are stored into the next memory location by
incrementing the operand. The contents of registers HL are
not altered. This is a 3-byte instruction, the second byte
specifies the low-order address and the third byte specifies the
high-order address.
Example: SHLD 2470

Exchange H and L with D and E

XCHG none The contents of register H are exchanged with the contents of
register D, and the contents of register L are exchanged with
the contents of register E.

Example: XCHG

Copy H and L registers to the stack pointer

SPHL none The instruction loads the contents of the H and L registers
into the stack pointer register, the contents of the H register
provide the high-order address and the contents of the L
register provide the low-order address. The contents of the H
and L registers are not altered.
Example: SPHL

Exchange H and L with top of stack

XTHL none The contents of the L register are exchanged with the stack
location pointed out by the contents of the stack pointer
register. The contents of the H register are exchanged with
the next stack location (SP+1); however, the contents of the
stack pointer register are not altered.
Example: XTHL

Push register pair onto stack

PUSH Reg. pair The contents of the register pair designated in the operand are
copied onto the stack in the following sequence. The stack
pointer register is decremented and the contents of the high-
order register (B, D, H, A) are copied into that location. The
stack pointer register is decremented again and the contents of
the low-order register (C, E, L, flags) are copied to that
location.
Example: PUSH B or PUSH A

Pop off stack to register pair

POP Reg. pair The contents of the memory location pointed out by the stack
pointer register are copied to the low-order register (C, E, L,
status flags) of the operand. The stack pointer is incremented
by | and the contents of that memory location are copied to
the high-order register (B, D, H, A) of the operand. The stack
pointer register is again incremented by 1.
Example: POP H or POP A

Output data from accumulator to a port with 8-bit address

ouT 8-bit port address The contents of the accumulator are copied into the 'O port
specified by the operand.
Example: OUT 87

Input data to accumulator from a port with 8-bit address

IN 8-bit port address The contents of the input port designated in the operand are
read and loaded into the accumulator.
Example: IN 82

Arithmetic Instructions:

Opeode Operand Description
Add register or memory to accumulator
ADD R The contents of the operand (register or memory) are
M added to the contents of the accumulator and the result is

stored in the accumulator. If the operand is a memory
location, its location is specified by the contents of the HL
registers. All flags are modified to reflect the result of the
addition.

Example: ADDB or ADD M

Add register to accumulator with carry
ADC R The contents of the operand (register or memory) and
M the Carry flag are added to the contents of the accumulator

and the result is stored in the accumulator. If the operand is a
memory location, its location is specified by the contents of
the HL registers. All flags are modified to reflect the result of
the addition.
Example: ADC B or ADC M

Add immediate to accumulator

ADI 8-bit data The B-bit data (operand) is added to the contents of the
accumulator and the result 1s stored in the accumulator. All
flags are modified to reflect the result of the addition.
Example: ADI 45

Add immediate to accumulator with carry

ACI B-bit data The B-bit data (operand) and the Carry flag are added to the
contents of the accumulator and the result is stored in the
accumulator. All flags are modified to reflect the result of the
addition,
Example: ACI 45

Add register pair to H and L registers

DAD Reg. pair The 16-bit contents of the specified register pair are added to
the contents of the HL register and the sum is stored in the
HL register. The contents of the source register pair are not
altered. If the result is larger than 16 bits, the CY flag is set.
No other flags are affected.
Example: DAD H

Subtract register or memory from accumulator

SUB R The contents of the operand (register or memory) are
M subtracted from the contents of the accumulator, and the
result is stored in the accumulator. If the operand is a
memory location, its location is specified by the contents of

the HL registers. All flags are modified to reflect the result of
the subtraction.

Example: SUBB or SUBM

Subtract source and borrow from accumulator

SBB R The contents of the operand (register or memory) and
M the Borrow flag are subtracted from the contents of the
accumulator and the result is placed in the accumulator. If
the operand is a memory location, its location is specified by
the contents of the HL registers. All flags are modified to
reflect the result of the subtraction.
Example: SBB B or SBB M

Subtract immediate from accumulator

SUI 8-bit data The 8-bit data (operand) is subtracted from the contents of the
accumulator and the result is stored in the accumulator. All

flags are modified to reflect the result of the subtraction.
Example: SUI 45

Subtract immediate from accumulator with borrow

SBI 8-bit data The 8-bit data (operand) and the Borrow flag are subtracted
from the contents of the accumulator and the result is stored
in the accumulator. All flags are modified to reflect the result
of the subtracion.

Example: SBI 45

Increment register or memory by 1
INR R The contents of the designated register or memory) are
M incremented by 1 and the result is stored in the same place. If
the operand is a memory location, its location is specified by
the contents of the HL registers.
Example: INR B or INR M

Increment register pair by 1

INX R The contents of the designated register pair are incremented
by | and the result is stored in the same place.
Example: INX H

Decrement register or memory by 1

DCR R
M

Decrement register pair by |
R

DCX

Decimal adjust accumulator

DAA none

BRANCHING INSTRUCTIONS

Opcode Operand

Jump unconditionally
IMP 16-bit address

Jump conditionally

Operand: 16-bit address

Opcode
JNC
1Z
INZ

JPO

Description

Jump on Carry
Jump on no Carry
Jump on positive
Jump on minus
Jump on zero

Jump on no zero
Jump on parity even
Jump on parity odd

The contents of the designated register or memory are
decremented by 1 and the result is stored in the same place. If

the operand is a memory location, its location is specified by
the contents of the HL registers,
Example: DCRB or DCR M

The contents of the designated register pair are decremented
by 1 and the result is stored in the same place.
Example: DCX H

The contents of the accumulator are changed from a binary
value to two 4-bit binary coded decimal (BCD) digits. This is
the only instruction that uses the auxiliary flag to perform the
binary to BCD conversion, and the conversion procedure is
described below. S, Z, AC, P, CY flags are altered to reflect
the results of the operation.

If the value of the low-order 4-bits in the accumulator is

greater than 9 or if AC flag is set, the instruction adds 6 to the
low-order four bits,

If the value of the high-order 4-bits in the accumulator is
greater than 9 or if the Carry flag is set, the instruction adds 6
to the high-order four bits,

Example: DAA

Description

The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand.
Example: JMP 2034 or JMP XYZ

The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand based on
the specified flag of the PSW as described below.

Example: JZ 2034 orJZ XYZ

Unconditional subroutine call

CALL 16-bit address

Call conditionally

Operand: 16-bit address

Opcode
53

CNC
CP
M
CZ
CNZ
CPE
CPO

Description

Call on Carry
Call on no Carry
Call on positive
Call on minus
Call on zero
Call on no zero

Call on parity even

Call on parity od

The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand. Before
the transfer, the address of the next instruction after CALL
(the contents of the program counter) is pushed onto the stack.
Example: CALL 2034 or CALL XYZ

The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand based on
the specified flag of the PSW as described below. Before the
transfer, the address of the next instruction after the call (the
contents of the program counter) is pushed onto the stack.
Example: CZ 2034 or CZ XYZ

Flag Status
CY =1

M
1<
o

|
SC—o=—a |

YENNGA®

d

Return from subroutine unconditionally

RET none

The program sequence is transferred from the subroutine to
the calling program. The two bytes from the top of the stack
are copied into the program counter, and program execution
begins at the new address.

Example: RET

Return from subroutine conditionally

Operand: none

Opcode
RC

RNC

RNZ
RPE
RPO

Description
Return on Carry

Return on no Carry
Return on positive
Return on minus

Return on zero

Return on no zero
Return on parity even
Return on parity odd

The program sequence is transferred from the subroutine to
the calling program based on the specified flag of the PSW as
described below. The two bytes from the top of the stack are
copied into the program counter, and program execution
begins at the new address,

Example: RZ

Flag Status
CY=1

™~
Bmoonnn=4

O=0 == |
=

TENN®O®R

Load program counter with HL. contents

PCHL none The contents of registers H and L are copied into the program
counter. The contents of H are placed as the high-order byte
and the contents of L. as the low-order byte.
Example: PCHL

Restart

RST 0-7 The RST instruction is equivalent to a 1-byte call instruction
to one of eight memory locations depending upon the number.
The instructions are pgenerally used in conjunction with
interrupts and inserted using external hardware. However
these can be used as software instructions in a program o
transfer program execution to one of the cight locations. The
addresses are:

Instruction Restart Address
RST O 0000H
RST 1 OOORH
RST 2 0010H
RST 3 O018H
RST 4 O020H
RST 5 0028H
RST 6 0030H
RST 7 O03RH

The BO835 has four additional interrupts and these interrupts
generate RST instructions internally and thus do not require
any external hardware. These instructions and their Restart
addresses are:

Interrupt Restart Address
TRAP 0024H
RST 5.5 002CH
RST 6.5 0034H
RST 7.5 003CH
LOGICAL INSTRUCTIONS
Opcode Operand Description
Compare register or memory with accumulator
CMP R The contents of the operand (register or memory) are
M compared with the contents of the accumulator. Both
contents are preserved . The result of the comparison is

shown by setting the flags of the PSW as follows:

if (A) < (reg/mem): carry flag is set, s=1

if (A) = (reg/mem): zero flag is set, s=0

if (A) > (reg/mem): carry and zero flags are reset, s=0
Example: CMPB or CMPM

Compare immediate with accumulator

CPI 8-bit data The second byte (8=bit data) is compared with the contents of
the accumulator. The wvalues being compared remain
unchanged. The result of the comparison is shown by setting
the flags of the PSW as follows:
if (A) < data: carry flag is set, s=1
if (A) = data: zero flag is set, 5=0
if (A) = data: carry and zero flags are reset, s=0
Example: CPI 89

Logical AND register or memory with accumulator
ANA R The contents of the accumulator are logically ANDed with
M the contents of the operand (register or memory), and the

result is placed in the accumulator. If the operand is a
memory location, its address is specified by the contents of
HL registers. S, Z, P are modified to reflect the result of the
operation. CY is reset. AC is set.
Example: ANA B or ANA M

Logical AND immediate with accumulator

ANI B-bit data The contents of the accumulator are logically ANDed with the
B-bit data (operand) and the result is placed in the
accumulator. S, Z, P are modified to reflect the result of the
operation. CY is reset. AC is set,
Example: ANI 86

Exclusive OR register or memory with accumulator
XRA R The contents of the accumulator are Exclusive ORed with
M the contents of the operand (register or memory), and the

result is placed in the accumulator. If the operand is a
memory location, its address is specified by the contents of
HL registers. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: XRA B or XRA M

Exclusive OR immediate with accumulator

XRI 8-bit data The contents of the accumulator are Exclusive ORed with the
8-bit data (operand) and the result is placed in the
accumulator. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: XRI 86

Logical OR register or memory with accumulaotr
ORA R The contents of the accumulator are logically ORed with
M the contents of the operand (register or memory), and the

result is placed in the accumulator. If the operand is a
memory location, its address is specified by the contents of
HL registers. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: ORA B or ORAM

Logical OR immediate with accumulator

ORI 8-bit data The contents of the accumulator are logically ORed with the
8-bit data (operand) and the result is placed in the
accumulator. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: ORI 86

Rotate accumulator left

RLC none Each binary bit of the accumulator is rotated left by one
position. Bit D7 is placed in the position of Dg as well as in
the Carry flag. CY is modified according to bit D7. S, Z, P,
AC are not affected.
Example: RLC

Rotate accumulator right

RRC none Each binary bit of the accumulator is rotated right by one
position. Bit Dg is placed in the position of D7 as well as in
the Carry flag. CY is modified according to bit Dg. S, Z, P,
AC are not affected.
Example: RRC

Rotate accumulator left through carry

RAL

none

Each binary bit of the accumulator is rotated left by one
position through the Carry flag. Bit D7 is placed in the Carry
flag. and the Carry flag is placed in the least significant
position Dg. CY is modified according to bit D7. 8, Z, P, AC
are not affected.
Example: RAL

Rotate accumulator right through carry

RAR none

Complement accumulator
CMA none

Complement carry

CMC none
Set Carry
STC none

CONTROL INSTRUCTIONS

Opcode Operand
No operation
NOP none

Halt and enter wait state
HLT none

Disable interrupts
DI none

Enable interrupts
El none

Each binary bit of the accumulator is rotated right by one
position through the Carry flag. Bit Do is placed in the Carry
flag, and the Carry flag is placed in the meost significant
position D7. CY is modified according to bit Dg. S, Z, P, AC
are not affected.
Example: RAR

The contents of the aceumulator are complemented. No flags
are affected.
Example: CMA

The Carry flag is complemented. No other flags are affected.
Example: CMC

The Carry flag is set to 1. No other flags are affected.
Example: STC

Description

No operation is performed. The instruction is fetched and
decoded. However no operation is executed.
Example: NOP

The CPU finishes executing the current instruction and halts
any further execution. An interrupt or reset is necessary to
exit from the halt state.

Example: HLT

The interrupt enable flip-flop is reset and all the interrupts
except the TRAP are disabled. No flags are affected.
Example: DI

The interrupt enable flip-flop is set and all interrupts are
enabled, No flags are affected. After a system reset or the
acknowledgement of an interrupt, the interrupt enable flip-
flop is reset, thus disabling the interrupts. This instruction is
necessary to reenable the interrupts (except TRAP).

Example: EI

Read interrupt mask

RIM

none

This is a multipurpose instruction used to read the status of
interrupts 7.5, 6.5, 5.5 and read serial data mput bit. The
mstruction loads eight bits in the accumulator with the
following interpretations.

Example: RIM

D, Do Ds D, D; D, D Dy
[SDIT17 [[I5]IE[7.5[65]5.5]

1 I —
Serial input Interrupt
data bit masked if
bit = 1
Interrupts Interrupt enable
pending if flip-flop is set
bit = | if bit = 1

Set interrupt mask

SIM

none

This i1s a multipurpose instruction and used to implement the
8085 interrupts 7.5, 6.5, 5.5, and serial data output. The
instruction interprets the accumulator contents as follows.
Example: SIM
D, D D D Dy D D D
[SOD | SDE | XXX | R7.5 [MSE [M7.5 | M6.5 | M5.5 |
I
| l
Serial output data Reset R7.5 Masks interrupts
ifDy =1 if bits = 1
Serial data enable Mask set
1 = Enable enable if
0 = Disable D=1

[) SOD— Serial Output Data: Bit D, of the accumulator is latched into the SOD output
line and made available to a serial peripheral if bit D, = I,

T SDE— Serial Data Enable: If this bit = 1, it enables the serial output, To implement
serial output, this bit needs to be enabled.

O XXX —Don't Care

00 R7.5—Reset RST 7.5: If this bit = I, RST 7.5 flip-flop is reset. This is an additional
control to reset RST 7.5.

[J MSE—Mask Set Enable: If this bit is high, it enables the functions of bits Dy, Dy, Dy.
This is a master control over all the interrupt masking bits. If this bit is low, bits Dy,
D,, and Dy, do not have any effect on the masks.

[0 M?7.5—D, = 0, RST 7.5 is enabled.

= 1, RST 7.5 is masked or disabled.
0O M6.5—D, = 0, RST 6.5 is cnabled.

= |1, RST 6.5 is masked or disabled.
O MS.5—Dy = 0, RST 5.5 is enabled.

I, RST 5.5 is masked or disabled.

Instruction cycle of 8085 Microprocessor

Time required to execute and fetch an entire instruction is called instruction cycle. It consists:
Fetch cycle — The next instruction is fetched by the address stored in program counter (PC)
and then stored in the instruction register.

Decode instruction — Decoder interprets the encoded instruction from instruction register.
Execution cycle - consists memory read (MR), memory write (MW), input output read (IOR)
and input output write (IOW)

The time required by the microprocessor to complete an operation of accessing memory or
input/output devices is called machine cycle. One time period of frequency of microprocessor
is called t-state. A t-state is measured from the falling edge of one clock pulse to the falling
edge of the next clock pulse.

Fetch cycle takes four t-states and execution cycle takes three t-states.

< Machine Cycle 1 - Machine Cycle2 ———————

€ ~—————————Fetch Cycle Execution Cycle —

Instruction Cycle —

Instruction cycle in 8085 microprocessor

Timing diagram

Timing Diagram is a graphical representation. It represents the execution time taken by each
instruction in a graphical format. The execution time is represented in T-states.

Opcode fetch cycle
j€———————Opcode tetch ———————»|
T, T2 LE] Ty

+ Each instruction of the processor has one byte opcode.

* The opcodes are stored in memory. So, the processor executes the opcode fetch
machine cycle to fetch the opcode from memory.

* Hence, every instruction starts with opcode fetch machine cycle.

* The time taken by the processor to execute the opcode fetch cycle is 4T.

* Inthis time, the first, 3 T-states are used for fetching the opcode from memory and the
remaining T-states are used for internal operations by the processor.

Memory read cycle
+ The memory read machine cycle is executed by the processor to read a data byte from
memory.
+ The processor takes 3T states to execute this cycle.
+ The instructions which have more than one byte word size will use the machine cycle
after the opcode fetch machine cycle.

j———— Memory reac ————]

Ty Tz T,

NS NS NS
Ay — Ag :)(Memory address

aef \

Ay —ADyg :x&—ﬁu)w(m-hmmm}-

to.vﬁl.s..s.,—<; IoOM=0,8 =18, =0

Memory write cycle

« The memory write machine cycle is executed by the processor to write a data byte
in a memory location.
« The processor takes, 3T states to execute this machine cycle.

8l

j#&———— opcode write ———»|

T, T2 Ts

NS NS NS

Ags—Ag 3(Memory address

VO read cycle
« The I/O Read cycle is executed by the processor to read a data byte from I/O

port or from the peripheral, which is /O, mapped in the system.
« The processor takes 3T states to execute this machine cycle.
« The IN instruction uses this machine cycle during the execution.

j¢&———— rOReas ——»|

T, T2 Ty

R F S BT |
ae | /\

Ay —Ag X VO Adar

Az — ADg Y1voadad)— vODaa)

© (| ~

10/M.S1,S, X 10M=1.5=1.5=0

/O write cycle
+« The I/O Read cycle is executed by the processor to write a data byte from
system to I/O port or peripheral, which is I/O mapped.
+ The processor takes 3T states to execute this machine cycle.
« The OUT instruction uses this machine cycle during the execution.

SIGNAL| T, T, T,
cLock _/
AD,AD, [X Portavoress}---:+--f oata | @iy

as -\
. —1

I0MS, 5, | X i, 50 | e

ks

Example-1

The instruction MOV B, C is of 1 byte; therefore, the complete instruction will be stored in a
single memory address.

2000 MOVB,C

Only opcode fetching is required for this instruction and thus we need 4 T states for the timing
diagram. For the opcode fetch the I0/M (low active) =0, S1 =1 and SO =1.

T1 T T3 T4

A1lS
X 20H higher order address| {decode

A8
A7 Xooﬂ 41 H opcode ——
AQ
4A|.E.O| \

1o/mM |
RD[—\ g
WRYf

In Opcode fetch (t1-t4 T-states):

1. 00 — lower bit of address where opcode is stored, i.e., 00 2.

20 - higher bit of address where opcode is stored, i.e., 20.

3. ALE - provides signal for multiplexed address and data bus. Only in t1 it used as address
bus to fetch lower bit of address otherwise it will be used as data bus.

4. RD (low active) — signal is 1 in t1 & t4 as no data is read by microprocessor. Signal is 0 in
12 & t3 because here the data is read by microprocessor.

5. WR (low active) — signal is 1 throughout, no data is written by microprocessor.

6. IO/M (low active) — signal is 1 in throughout because the operation is performing on memory.

7. 80 and S1 - both are 1 in case of opcode fetching.

Example-2
MVI B, 45
2000: Opcode
2001: 45

* The opcode fetch will be same in all the instructions.

» Only the read instruction of the opcode needs to be added in the successive T states.

« For the opcode fetch the I0/M (low active) =0, S1 =1 and S0 = 1. Also, 4 T states will
be required to fetch the opcode from memory.

« For the opcode read the IO/M (low active) =0, S1 =1 and S0 = 0. Also, only 3 T states
will be required to read data from memory.

. t1 t2 t3 t4 t5 te t7
Y Y AN W W W R
Decodin
ADO 02 - OPCODE ; £ 01 > OPCODE
AD7
ADS contents of 2p - contents of 2D
AD1S
| |

ALE
RD |
WR
1o/m - -

/ 10/Mi=0 sd=51=1 > 10/ M=0 s0=0 S1=1
51,50

In Opcode fetch (t1-t4 T-states) -

1.
2
3.

4.
5.

6.
r

00 - lower bit of address where opcode is stored.

20 - higher bit of address where opcode is stored.

ALE - Provides signal for multiplexed address and data bus. Only in t1 it used as address
bus to fetch lower bit of address otherwise it will be used as data bus.

RD (low active) — Signal is 1 in t1 & t4, no data is read by microprocessor. Signal is 0 in t2
& t3, data is read by microprocessor.

WR (low active) — Signal is 1 throughout, no data is written by microprocessor.

IO/M (low active) — Signal is 0 in throughout, operation is performing on memory.

S0 and S1 - Signal is 1 in t1 to t4 states, as to fetch the opcode from the memory.

In Opcode read (t5-t7 T-states) —

1.
2.
3.

-

oo ~N;m

01 - lower bit of address where data is stored.
320 - higher bit of address where data is stored.

ALE - Provides signal for multiplexed address and data bus. Only in t5 it used as address
bus to fetch lower bit of address otherwise it will be used as data bus.

. RD (low active) — Signal is 1 in t5 as no data is read by microprocessor. Signal is 0 in t6 &

t7 as data is read by microprocessor.

. WR (low active) — Signal is 1 throughout, no data is written by microprocessor.

. IO/M (low active) — Signal is 0 in throughout, operation is performing on memory.

. S0 - Signal is 0 in throughout, operation is performing on memory to read data 45.
. 81 - Signal is 1 throughout, operation is performing on memory to read data 45.

Intel8085: Basic Programs:
Exl: Place 05 in register B

Mnemonics | Operands | Memory Address | Machine Code | Comments
MVI B, 05 2000 H 06, 05 Get 05 in register B
HLT 2002 H 76 Stop

Ex2: Get 05 in register A; then move it to register B

Mnemonics | Operands | Memory Address | Machine Code | Comments

MVI A, 05 2000 H 3E, 05 Get 05 in register A

MOV B, A 2002 H 47 Content of register A is
moved to register B

HLT 2003 H 76 Stop

Ex3: Load the content of memory location 3550H directly to accumulator, then transfer to

register B. The content of memory location 3550H is 05

Mnemonics | Operands | Memory Address | Machine Code
LDA 3550H 2000 H 3A, 50, 35
MOV B, A 2003 H 47

HLT 2004 H 76

Ex4: Move the content of memory location 3550H to register C. The content of the memory

location 3550H is 08

Mnemonics | Operands | Memory Address | Machine Code
LXI H, 3550H 2000 H 21, 50, 35
MOV CM 2003 H 4E

HLT 2004 H 76

Ex5: Place the content of the memory location FC50H in register B and that of FC51H in

register C. The content of FC50H and FC51H are 11H and 12H respectively

Mnemonics | Operands | Memory Address | Machine Code
LX1 H, FC50H | 2500H 21, 50, FC
MOV B,M 2503H 46

INX H 2504H 23

MOV C,M 2505H 4E

HLT 2506H 76

The register B and C will contain 11H and 12H

DATA:

FC50-11H

FC51 - 12H

Ex6: Place 05 in the accumulator. Increment it by one and store the result in the memory

location 3600H

Mnemonics | Operands | Memory Address | Machine Code
MVI A, 05 2500 H 3E, 05

INR A 2502 H 3C

STA 3600 H 2503 H 32,00, 36

HLT 2506 H 76

INR A increases the content of accumulator from 05 to 06

RESULT:

3600H-06 H

Addition of Two 8-bit Numbers: Sum 8-bit

Add 49 H and 56 H.

Method#1

The 1" number 49 H is in the memory location 2501 H.

The 2™ number 56 H is in the memory location 2502 H.

The result to be stored in the memory location 2503 H.

Mnemonics | Operands | Memory Address | Machine Code
LDA 2501 H 2000 H 3A,01, 25
MOV B, A 2003 H 47

LDA 2502 H 2004 H 3A, 02,25
ADD B 2007 H 80

STA 2503 H 2008 H 32,03, 25
HLT 200B H 76

DATA

2501 -49H

2502-56H

By Method#2

Mnemonics | Operands | Memory Address | Machine Code
LXI H,2501H | 2000H 21,01,25
MOV A, M 2003 H 7E

INX H 2004 H 23

ADD M 2005 H 86

STA 2503 H 2006 H 32,03,25
HLT 2009 H 76

Addition of Two 8-bit Numbers: Sum 16-bit

Add 98 H and 9A H.

Method#1

The 1" number 98 H is in the memory location 2501 H.

The 2™ number 9A H is in the memory location 2502 H.

The result to be stored in the memary location 2503 H & 2504 H.

AHEAD:

AHEAD:

Mnemonics | Operands | Memory Address | Machine Code

MVI C, 00H 2000 H OE, 00

LDA 2501 H 2002 H 3A,01, 25

MOV B, A 2005 H 47

LDA 2502 H 2006 H 3A, 02,25

ADD B 2009 H 80

INC AHEAD 200A H D2, OE, 20

INR C 200D H 0C

STA 2503 H 200E H 32,03, 25

MOV A C 2011 H 79

STA 2504 H 2012 H 32,04, 25

HLT 2015 H 76
Method#2

Mnemonics | Operands | Memory Address | Machine Code

MVI C, 00H 2000 H 0E, 00

LXI H,2501H |2002H 21,01, 25

MOV AM 2005 H 7E

INX H 2006 H 23

ADD M 2007 H 86

INC AHEAD 2008 H D2, 0C, 20

INR C 200B H 0C

STA 2503 H 200C H 32,03, 25

MOV A, C 200FH 79

STA 2504 H 2010 H 32,04, 25

HLT 2013 H 76

DATA

2501 -49H

2502-56H

DATA
2501 -98H
2502-9AH

Result
2503-32H
2504 -01H

DATA
2501 -98H
2502-9AH

Result
2503-32H
2504 -01H

Decimal Addition of Two 8-bit Numbers:

Add 84 D and 75 D.

The 1* number 84 D is in the memory location 2501 H.

The 2™ number 75 D is in the memory location 2502 H.

The result to be stored in the memory location 2503 H & 2504 H.

Mnemonics | Operands | Memory Address | Machine Code
MVI C, 00H 2000 H OE, 00
LXI H,2501H | 2002 H 21,01, 25
MOV A M 2005 H TE

INX H 2006 H 23

ADD M 2007 H 86

DAA 2008 H 27

JNC AHEAD 2009 H D2, 0D, 20
INR C 200C H 0oC

STA 2503 H 200D H 32,03,25
MOV A, C 2010 H 79

STA 2504 H 2011 H 32,04, 25
HLT 2014 H 76

Subtraction of Two 8-bit Numbers:

Subtract 32 Hfrom49H. 499H-32H

Method#1

The 1¥ number 49 H is in the memory location 2501 H.
The 2™ number 32 H is in the memory location 2502 H.
The result to be stored in the memory location 2503 H & 2504 H.

Mnemonics | Operands | Memory Address | Machine Code
MVI C, 00H 2000 H 0E, 00
LDA 2501 H 2002 H 3A,01,25
MOV B,A 2005 H 47
LDA 2502 H 2006 H 3A,02,25
SUB B 2009 H 90
INC AHEAD |200AH D2, OE, 20
INR C 200D H 0C
STA 2503 H 200E H 32,03,25
MOV C A 2011 H 79
STA 2504 H 2012H 32,04, 25
HLT 2015 H 76

DATA

2501-49H

2502-32H

Result

2503-17H

2504-00H

DATA
2501 -84D
2502-75D

2503-59D
2504 - 01

Method#2

Mnemonics | Operands | Memory Address | Machine Code

MVI C, OOH 2000 H 0E, 00

LXI H, 2501 H | 2002 H 21,01, 25

MOV AM 2005 H TE

INX H 2006 H 23

SUB M 2007 H 96

JNC AHEAD 2008 H D2,0C, 20

INR C 200B H 0C
AHEAD: | STA 2503 H 200C H 32,03, 25

MOV C, A 200F H 79

STA 2504 H 2010H 32,04, 25

HLT 2013 H 76

DATA

2501 -32H

2502-49H

Result

2503-F9H

2504 -01 H

Decimal Subtraction of Two 8-bit Numbers:

Subtract 38 D from 96 D.
The 1" number 96 D is in the memory location 2501 H.
The 2™ number 32 D is in the memory location 2502 H.

96— 38

The result to be stored in the memory location 2503 H.

In decimal subtraction, the number which is to be subtracted is converted into 10’s complement

Mnemonics | Operands | Memory Address | Machine Code
LXI H, 2502 H | 2000 H 21,02, 25
MVI A ,99H 2003 H 3E, 99
SUB M 2005 H 96
INR A 2006 H 3C
DCX H 2007 H 2B
ADD M 2008 H 86
DAA 2009 H 27
STA 2503 H 200A H 32,03, 25
HLT 200D H 76

DATA

2501 =96 D

2502-38D

Result

2503-58D

Find One’s complement of an 8-bit number

96 H = 1001 0110

One’s complement = 0110 1001 = (69 H)

The number is placed in the memory location 2501 H
The result is stored in the memory location 2502 H

Mnemonics | Operands | Memory Address Machine Code
LDA 2501 H 2000 H 3A,01,25
CMA 2003 H 2F
STA 2502 H 2004 H 32,02,25
HLT 2007 H 76
DATA
2501 -96 H
Result
2502-69H
Find Two’s complement of an 8-bit number:
96 H = 1001 0110
One’s complement = 0110 1001 = (69 H)
Add 01 in 1’s complement, after addition = 6A H
The number is placed in the memory location 2501 H
The result is stored in the memory location 2502 H
Mnemonics | Operands | Memory Address Machine Code
LDA 2501H | 2000H 3A, 01, 25 DA
CMA 2003 H 2F 2501 -96 H
INR A 2004 3C
STA 2502 H 2005 H 32,02,25 Result
HLT 2008 H 76 2502-6AH
Find One's complement of a 16-bit number:
5485 H = 0101 0100 1000 0101
One’s complement = 1010 1011 0111 1010=(AB7A H)
The number is placed in the memory location 2501 H & 2502 H
The result is stored in the memory location 2503 H & 2504 H
Mnemonics | Operands | Memory Address Machine Code
LXI H,2501H | 2000 H 21,01, 25
MOV AM 2003 H 7E DATA
CMA 2004 H 2F 2501 -85H
STA 2503 H 2005 H 32,03,25 2502-54H
INX H 2008 H 23
MOV AM 2009 H 7E Result
CMA 200A H 2F 2503 -T7AH
STA 2504 H 200B H 32,04, 25 2504 — AB H
HLT 200E H 76

UNIT-5 Interfacing and support chips
8255 Programable Peripheral Interface (PPI)

+ PPI8255is a general purpose programmabile I/O device designed to interface the CPU
with its outside world such as ADC, DAC, keyboard etc.

* We can program it according to the given condition. It can be used with almost any
microprocessor.

« It consists of three 8-bit bidirectional I/O ports (24 I/O lines) which can be configured
as per the requirement.

Ports of 8255A
8255A has three ports, i.e., PORT A, PORT B, and PORT C.

+ Port A (PAO-PA7) contains one 8-bit output latch/buffer and one 8-bit input buffer.

+ Port B (PB0-PB7) is similar to PORT A.

* Port C can be split into two parts, i.e., PORT C lower (PC0-PC3) and PORT C upper

(PC7-PC4) by the control word.

These three ports are further divided into two groups, i.e., Group A includes PORT A and
upper PORT C. Group B includes PORT B and lower PORT C. These two groups can be
programmed in three different modes, i.e., the first mode is named as mode 0, the second
mode is named as Mode 1 and the third mode is named as Mode 2.

Features of 8255A

The prominent features of 8255A are as follows —= 0O It
consists of 3 8-bit I/O ports i.e., PA, PB, and PC.
* Address/data bus must be externally demultiplexed.
+ Itis TTL compatible.
« It has improved DC driving capability.

Architecture of 8255 PPI:

— Ph; - PAy

8-bit internal —_—
data bus Ik :> PC; - PC,

Architecture of 8285 PPI
The figure above represents the architectural representation of 8255 PPI:

Let us understand the operation performed by each unit separately.

Data bus buffer:

It is used to connect the internal bus of 8255 with the system bus so as to establish
proper interfacing between the two.

The data bus buffer allows the read /write operation to be performed from/to the
CPU.

The buffer allows the passing of data from ports or control register to CPU in case of
write operation and from CPU to ports or status register in case of read operation.

R ri ntrol logic:

This unit manages the internal operations of the system. This unit holds the ability
to control the transfer of data and control or status words both internally and
externally.

Whenever there exists a need for data fetch then it accepts the address provided by
the processor through the bus and immediately generates command to the 2 control
groups for the particular operation.

Group A and Group B control:

These two groups are handled by the CPU and functions according to the command
generated by the CPU.

The CPU sends control words to the group A and group B control and they in turn
sends the appropriate command to their respective port.

Group A the access of the port A and higher order bits of port C. While group B
controls port B with the lower order bits of port C.

Pin Diagram of 8255 PPI

The figure below represents the 40 pin configuration of 8255 programmable
peripheral interface:

ea, {1 40 3 pa,
Pa,]2 39 [Pag
PA, 3 38 [Pa,
L == B 37 [Pa,
RD 5 36 O Wr
€= s 35 [RESET
GHD] 7 34 Mo,
a8 33 Do,
e — -} 32 b,
PC, 10 31 o
PC, . 11 8255A 30 | D,
PCs 12 29 DO o,
PC.] 13 28 b1 o,
PCo] 14 27 9 o,
PC,] 15 26 [v
PC:] 16 25 O P,
PC. 17 24 QA Pa,
PB,] 48 23 [pB,
P8, .4 19 22 D Pe.
PBe:] 20 21 es,

Pin Diagram of 8258 PPI

CS:

It stands for chip select. A low signal at this pin shows the enabling of communication
between the 8255 and the processor.

More specifically we can say that the data transfer operation gets enabled by an active
low signal at this pin.

RD:

It is the signal used for read operation.

A low signal at this pin shows that CPU is performing read operation at the ports or
status word.

Or we can say that 8255 is providing data or information to the CPU through data
buffer.

WR:

It shows write operation. A low signal at this pin allows the CPU to perform write
operation over the ports or control register of 8255 using the data bus buffer.

Aoand Ay;

These are basically used to select the desired port among all the ports of the 8255 and
it do so by forming conjunction with RD and WR.

It forms connection with the LSB of the address bus.

The table below shows the operation of the control signals:

Ao RD' WR' cs' Input/Output Operation
0 0 1 0 Port A - Data Bus
1 0 1 0 Port B - Data Bus
0 0 1 0 Port C - Data Bus
0 1 0 0 Data Bus - Port A
1 1 0 0 Data Bus - Port B
Ao RD' WR' cs' Input/Output Operation
0 1 0 0 Data Bus - Port C

1 1 0 0 Data Bus - Control register

Reset;

It is an active high signal that shows the resetting of the PPI.

A high signal at this pin clears the control registers and the ports are set in the input
mode.

Initializing the ports to input mode is done to prevent circuit breakdown.

As in case of reset condition, if the ports are initialized to output mode then there
exist chances of destruction of 8255 along with the processor.

PA7-PAO:
These are eight port A lines that acts as either latched output or buffered input
lines depending upon the control word loaded into the control word register.

PC7-PC4:
Upper nibble of port C lines. They may act as either output latches or input buffers
lines. This port also can be used for generation of handshake lines in mode 1 or
mode 2.

PC3-PCO:

These are the lower port C lines, other details are the same as PC7-PC4 lines.

PBO-PB7:
These are the eight port B lines which are used as latched output lines or buffered
input lines in the same way as port A.

DO0-D7: These are the data bus lines those carry data or control word to/from the
microprocessor.

ycc:

It is a supply voltage. The 8255 requires +5V supply to operate.

GND:

It is the ground reference. If there is excessive power supply then it passed to
ground.

MODES OF OPERATION:
As we have already discussed that 8255 has two modes of operation. These are as
follows:

1. Bitset/reset mode

2. 1/0 mode

Bit Set-Reset mode:
When port C is utilized for control or status operation, then by sending an OUT
instruction, each individual bit of port C can be set or reset.

1/0 mode:
As we know that 1/ O mode is sub-classified into 3 modes. So, let us now discuss the
3 modes here.

Mode 0: Input/output mode:

This mode is the simple input output mode of 8255 which allows the programming
of each port as either input or output port. The input/output feature of mode 0
includes:

e [t does not support handshaking or interrupt capability.
e The input ports are buffered while outputs are latched.

Mode 1: Input/output with handshaking:

Mode 1 of 8255 supports handshaking with the ports programmed as either input
or output mode. We know that it is not necessary that all the time the data is
transferred between two devices operating at same speed. So, handshaking signals
are used to synchronize the data transfer between two devices that operates at
different speeds.

The figure below shows the data transferring between CPU and an output device
having different operating speeds:

Data Bus

Output
device

Data Transfer using
handshaking signals

e Here STB signal is used to inform the output device that data is available on the data
bus by the processor.

Here port A and port B can be separately configured as either input or output port
Both the port utilizes 3-3 lines of port C for handshaking signals. The rest two lines
operates as input/output port.

It supports interrupt logic.

The data at the input or output ports are latched.

¢ In this mode, the ports can be utilized for the bidirectional flow of information by
handshaking signals.

¢ The pins of group A can be programmed to acts as bidirectional data bus and the
port C upper (PC7 - PC4) are used by the handshaking signal.

e The rest 4 lower port C bits are utilized for I/0 operations.

e As the data bus exhibits bidirectional nature thus when the peripheral device
request for a data input only then the processor load the data in the data bus.

e Port B can be programmed in mode 0 and 1. And in mode 1 the lower bits of port
C of group B are used for handshaking signals.

Seven segment LED display

A seven-segment LED is a kind of LED (Light Emitting Diode) consisting of 7 small LEDs it
usually comes with the microprocessor's as we commonly need to interface them with
microprocessors like 8085.

Structure of Seven Segments LED:

f (=]
|_ e |

eI lc
d ®h

* |t can be used to represent numbers from 0 to 8 with a decimal point.
* We have eight segments in a Seven Segment LED display consisting of 7 segments
which include “.".
+ The seven segments are denoted as “a, b, c, d, e, f, g, h” respectively, and ‘. is
represented by “h”.
Interfacing Seven Segment Display with 8085:
We will see a program to Interfacing Seven Segment Display with 8085 using 8255.
Note logic needed for activation —
Common Anode — 0 will make an LED glow.
Common Cathode - 1 will make an LED glow.
Common Anode Method:
Here we are using a common anode display therefore 0 logic is needed to activate the
segment. Suppose to display number 9 at the seven-segment display, therefore the segments
F, G, B, A, C, and D have to be activated.
The instructions to execute it is given as,
MVI A99
OuUT 00
« First, we are storing the 99H in the accumulator i.e., 10010000 by using MVI
instruction.
+ By OUT instruction we are sending the data stored in the accumulator to the port 00H.
Common Cathode Method:
Here we are using common cathode 1 logic is needed to activate the signal. Suppose to
display number 9 at the seven-segment display, therefore the segments F, G, B, A, C,and D
have to be activated.
The instructions to execute it is given as,
MV A6F
OUT 00
+ First, we are storing the 6FH in the accumulator i.e., 01101111 by using MVI
instruction.
« By OUT instruction we are sending the data stored in the accumulator to the port 00H.

Traffic light controller

The traffic lights are interfaced to Microprocessor system through buffer and ports of
programmable peripheral Interface 8255. So the traffic lights can be automatically switched
ON/OFF in desired sequence. The Interface board has been designed to work with parallel
port of Microprocessor system.

Working Program

Design of a microprocessor system to control traffic lights. The traffic should be controlled in
the following manner.

1) Allow traffic from W to E and E to W transition for 20 seconds.

2) Give transition period of 5 seconds (Yellow bulbs ON)

3) Allow traffic from N to 5 and 5 to N for 20 seconds

4) Give transition period of 5 seconds (Yellow bulbs ON) 5) Repeat the process.

Source Program:
MVI A, 80H: Initialize 8255, port A and port B
OUT 83H (CR): in output mode

START: MVI A, 09H
OUT 80H (PA): Send data on PA to glow R1 and R2

MVI A, 24H
OUT 81H (PB): Send data on PB to glow G3 and G4
MVI C, 28H: Load multiplier count (4010) for delay
CALL DELAY: Call delay subroutine
MVI A, 12H
OUT (81H) PA: Send data on Port A to glow Y1 and Y2
OUT (81H) PB: Send data on port B to glow Y3 and Y4
MVI C, 0AH: Load multiplier count (1010) for delay
CALL: DELAY: Call delay subroutine
MVI A, 24H
OUT (80H) PA: MVI Send data on port A to glow G1 and G2
A, 09H
OUT (81H) PB: Send data on port B to glow R3 and R4
MVI C, 28H: Load multiplier count (4010) for delay
CALL DELAY: MVI Call delay subroutine
A, 12H
OUT PA: Send data on port A to glow Y1 and Y2
OUT PB: Send data on port B to glow Y3 and Y4
MVI C, OAH: Load multiplier count (1010) for delay
CALL DELAY: Call delay subroutine
JMP START
Delay Subroutine:
DELAY: LXID, Count: Load count to give 0.5 sec delay
BACK: DCXD: MOVA,D Decrement counter
ORAE: Check whether count is 0
JNZ BACK: If not zero, repeat
DCRC: Check if multiplier zero, otherwise repeat
JNZ DELAY

RET: Return to main program

Square wave generator
« With O0H as i/p to DAC, analog o/p is -5V, and with FFH as i/p, analog o/p
is +5V.
* |/P O0OH and FFH at regular intervals generate square wave. 0 The
frequency can be varied by varying the time delay.

Algorithm

Initialize the control word of 8255 to operate in I/O mode for port A and B & C to operate in o/p
mode.

Program

MVI A,80

OUT CWR initialize the control word
LOOP: MVI A,00

OUT PA
CALL DELAY
MVI A FF
OUT PA
CALL DELAY
JMP LOOP
DELAY: MVI C,85
BACK: DCR C
JNZ BACK
RET

