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Hydrostatic equation 

dp 
= - g 

dz 

Hydraulics I 
 

A Hydrostatics 

 
B1 Hydrostatic pressure and the hydrostatic equation 

Hydrostatics: 

Hydrostatics deals with the study of fluids at rest and in equilibrium (like statics in mechanics). Net 

forces are zero, and there is no flow. 

 

Consider a small static cylinder of fluid, with axis of the cylinder (s-axis) tilted at an angle  to the 

vertical, z-axis. 

 

z 

 

 
 

dz = ds cos









Volume of fluid element = dA ds 

Mass of fluid element m =  dA ds 

 

Resolving forces in the s-direction 

 

Gravitational force = -mg = -g dA ds (downwards). 

Pressure force (s-direction) = p dA - (p+dp) dA = - dp dA 

Gravitational force (s-direction) = -mg cos = -g dA ds cos = -g dA dz 
 

So total force in s-direction  
- dp dA - g dA dz = 0. 

 

Rearranging this gives us: 
 

 
Note the pressure increases as z decreases (or depth increases). Integrating downwards (in the negative 

z-direction) from a point z0 of known pressure p0 to a point z < z0 
 

z z0 

p(z) = p0 - g  dz = p0 + g  dz 

z0 z 
 

Thus the pressure (relative to the reference pressure) is given by the weight of fluid per unit area above 

that point. 



ds p+dp 

p 
mg 
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3 m 
dA 

Pressure underwater 

We will usually deal with simple uniform constant pressure. E.g. the pressure under water at a depth h 

below the free surface (where the pressure is patm) is given by 

 

p = patm + gh 

Example: What is the pressure (relative to atmospheric pressure) at a depth of 10 m and 1000 m 

underwater? [98.1 kPa, 9.81 MPa] 

 
 

Example: vertical force on a dam. 

Dam length 40 m. 
 

 
 

 

 

4 m 
 

The pressure force will act on the surface of the dam in a direction normal to the face of the dam. Thus 

to find the total force we would need to integrate the pressure force (which varies with depth) over the 

sloping dam face. However, the vertical component of this force is the local pressure multiplied by the 

plan projection of the surface: 

 

vertical 

component 

of pressure 

 
pressure force = p dA 



force dA 



projection dA cos 

(p dA) cos  = p (dA cos ) 

 

Since the pressure is equal to the total weight per unit area of the water above that point, the downward 

component of the force on the element dA is equal to the total weight of water above dA. Thus the 

total vertical force on the dam is simply the weight of water above the dam [= 2.354 MN]. 

 

Absolute, gauge and vacuum pressure 

Absolute pressure is the pressure measured relative to a total vacuum, and thus is always positive. 

 

We often measure pressures relative to the local atmospheric pressure (e.g. the pressure underwater 

above) and this is known as the gauge pressure Since pressure differences are what gives net forces, 

subtracting a constant reference pressure is not generally important in fluid dynamics (but we need the 

absolute pressure for the gas equation, for example). 

 

If the pressure is less than atmospheric pressure but given as relative to atmospheric pressure this is 

sometimes referred to as a vacuum pressure (e.g. a vacuum pressure of 10 kN/m
2
 is a pressure of 

10 kN/m
2
 below atmospheric pressure, or a gauge pressure of -10kN/m

2
). 


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p1 area a 
p2 

d 


h 

B2 Pressure measurement 

Piezometer 

The pressure in a liquid can be measured (relative to atmospheric pressure) using a piezometer tube, 

e.g. by tapping a tube into a pipe: 
 

p – patm = gh 

 

 

 
 

 

Manometer 
A U-tube manometer can measure the pressure 

difference between two points or relative to 
p

 

atmospheric pressure (as shown). 
 

The pressure on the horizontal line must be the y2 

same in both arms of the tube: 

 

p + gy2 = patm + mgy1 

 

 

 
patm 

 

y1 

 

 

thus 
 

m 
p – patm = mgy1 - gy2 

 

E.g. what is p (relative to atmospheric) if a water filled manometer has 

y1 = 4cm and y2 = 10 cm? (assume  = 1.2 kg m
-3

.) 

[answer 391 Pa] 

 

Inclined manometer 

When measuring small pressures using a manometer, the height moved by the fluid can be small. To 

make measurement easier an inclined manometer can be used: 

 

 

 

 

Fluid level when 
h pressures are equal 

 

area A 

 

p1 = p2 + g(h + h) h = d sin  Ah = a d 

p1 - p2 = gd(sin  + a/A) 

If a << A, then p1 - p2 = gd sin 

patm 

h 

p 
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B3 Hydrostatic force on a plane surface 

The force on a submerged surface is always normal to surface, whatever its orientation or shape. 

 

Vertical rectangle 

 

 

 

 

 

 

 

 

 

 
 

The magnitude of the total force is given by the area under the pressure diagram times the width (b). 

 

F = ½ (gh1 + gh2) d b = ghCG d b 

The force is the average pressure multiplied by the area (A), and the average pressure is the pressure at 

the centroid of the submerged shape (here just the centre of the rectangle). 

 

F = pCG A = ghCG A 

Although the force can be found from the pressure at the centroid of the rectangle, the force does not 

act through this point. Instead it acts through a point known as the centre of pressure, which is below 

the centroid as the pressures are higher with depth. We can find the centre of pressure by considering 

moments of the forces about an axis at the surface. 
 

 

 

 

 
gh2 

 

h p dA  =  h gh  dA = hCP F = hCP ghCG A 

 

 

hCP = 

h
2
dA 

AhCG 
 

Inclined rectangle  
 

F = ghCG A = glCG sin A 

 

l
2
dA 

lCP = 
 

 

AlCG 

 

 

hCP = lCP sin

h1 hCG 

gh1 

d 
h2 

gh2 

b 

gh1 hCP 

F 

hCP 

F 


hCG 

lCG 

lCP 
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d d 

Examples: rectangles 

Vertical rectangle, height 2m, width 1.5 m, with the centre of the rectangle 3m below the surface. 

[Total force = 88.3 kN (in horizontal direction), acting at a point 3.11 m below the surface.] 

Inclined rectangle: same as before but this time inclined with  = 60. 

[Total force is still 88.3 kN, but this time acting 30 below the horizontal, at a point 3.08 m below the 

surface (a distance 9.6 cm along the rectangle from its centre).] 
 

General plane shape 

For any submerged inclined plane shape, we find the same relationships as for the inclined rectangle. 

l
2
dA 

F = ghCG A = glCG sin A lCP = 
AlCG 

hCP = lCP sin



l
2
 dA  is the second moment of area for the shape about the axis on the water surface as shown above. 

Parallel axis theorem 

There are standard results for the second moments of area for various shapes but generally about an 

axis through their centre, ICG. We can use the parallel axis theorem to find second moments about 

other axes, such as at the surface: 
 

l
2
 dA   =  ICG + A lCG

2
 

Note we are measuring the lengths l on the inclined surface (the pressure force acts normal to this 

surface). We can use this result to find the centre of pressure: 
 

l =
 ICG    

+ l 
CP A lCG 

CG 

b 

 

1 1  
ICG = 

12 
b d

3
 ICG = 

64 
 d

4
 

 

 
Example: Circular gate 

What is the force on a circular gate of diameter 0.8m mounted on a sloping dam face of angle 45, and 

where does it act? 

 

Distance along the slope to the top of the gate is 2.828 m, 

so lCG = 2.828 + 0.4 = 3.228 m. Thus hCG = 2.283 m. 

 

A = 0.503 m
2
, F = 11.27 kN 

ICG = 0.02011 m
4
 

lCP = 0.0124 m + lCG = 3.240 m 

 

This is a distance of 0.412 m along the slope from the top of the gate, so, for example, the moment of 

the force about the top of the gate is 4.64 kN m. 

2 m 

0.8 m 
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B4 Buoyancy and Archimedes Principle 

Forces on a submerged object 

 

 

 

 

 

 

 

 

 

 

 

 

The vertical force on a submerged object can be thought of as a downward force on the upper surface 

of the object together with an upward force on the lower surface. The force on the upper surface is the 

weight of the water above this surface. The force on the lower surface is of the same magnitude (but 

opposite direction) as the weight of water that would be above this surface if the object were not 

present. The difference is an upward force equal to the weight of water displaced by the object 

(Archimedes Principle). 

 

Alternatively consider the forces acting on a submerged object of volume V and density O. The 

gravitational force on the object is mg = OVg downwards. If the object is denser than water we expect 

the object to sink (net force downwards), while if it is less dense we expect it to float (net force 

upwards). If the object has the same density as water (O = ) we expect the net force to be zero, so the 

buoyancy force must balance the gravitational force. Thus B = mg = Vg, or again the buoyancy force 

is equal to the weight of water of the same volume as the object. 

 

 

Example: Forces on a cuboid 

 

What are the hydrostatic forces on the cuboid shown, if the other dimension is 3 m? 

 

Pressure on top face = 19.62 kPa 

 

Force on top face = 294.3 kN (downwards) 

Pressure on bottom face = 34.34 kPa 

Force on bottom face = 515.0 kN (upwards) 

5 m Thus total force = 220.7 kN (upwards) 
 

Volume of cuboid = 22.5 m
3
, weight of water displaced = 220.7 kN. 

2 m 

1.5 m 
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B5 Hydrostatic force on a curved surface 

The hydrostatic pressure force is always normal to the surface, so for a simple curved surface of 

uniform curvature, the total force must pass through centre of curvature. 

 

It is generally easiest to calculate the vertical and horizontal components of the total force separately, 

and then the point of application of the force can be found by ensuring the total force passes through 

the centre of curvature. 

 

 

 

Width: 5.5 m 

 

 

 

 

 

 

 

 
Example: forces on a curved gate 

First, some geometry. 

1 m 

 
0.866 m 

 

Area of sector = 0.524 m
2
. 

Area of triangle = 0.217 m
2
. 

Area A = 0.307 m
2
. 

 

 

 

Vertical force 

 

 

 

 
 

2.5 m 

 
 

0.5 m 
 

 

 
 

Vertical force equal to weight of fluid displaced by 

following shape: 

 

 

Area of shape = 0.5  2.5 + A = 1.557 m
2
 

Weight = 84.01 kN 

 

 

 

 

 
Horizontal force 

0.866 m 

 

Horizontal force is the same as that on a vertical surface of the same 

height. Average pressure = (2.5 + ½0.866)  g = 28.77 kPa 

 

Force = 28.77  0.866  w = 137.0 kN 
 

Total force  

 
magnitude = 160.7 kN,  = 31.5



2.5 m 

1 m 

 
60 






A 
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B6 Tutorial: Hydrostatics 

Rectangular gate 

 

 

Curved gate 
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B Kinematics and continuity 

 
C1 Kinematics 

Velocity of a fluid is a vector function of position and time. 

 

u(x, t) = (u, v, w) or (ux, uy, uz) where x = (x, y, z). 

 

Typically, velocity is measured by an instrument placed at a particular position x in the flow. For 

example: hot wire probes, pitot tubes, anemometers, current meters, LDA, acoustic Doppler. This way 

of thinking of the velocity as a function of position is called Eulerian representation. The 

disadvantage of the Eulerian representation is that you're not measuring the same piece of fluid. 

 

Alternatively, flow can be measured by following the motion of particular fluid elements (e.g. using 

tracers, dyes, floats, bubbles, or small particles). Thinking of the flow in this way is called the 

Lagrangian representation. 

 

Pressure is a scalar function of position and time. p(x, t) 

 

Path line or particle path 

The line followed by a particle in the fluid released at some point in the flow (what you would see with 

a long exposure photograph of the flow). 

particle released 

here (eg at t=0) particle is carried 

by the flow 

 

Streakline or dyeline 

The line of dye resulting by continuously injecting dye at a particular point in the flow. 

dye continuously 

injected here 

 

 

 

 

Streamlines 

Lines everywhere tangent to the flow direction. This gives an overall picture of the flow field (at a 

particular instant in time). 
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 

Steady flow 

Flow that doesn't change in time (though the velocity may be different in different parts of the fluid). 
u 

 0 (at constant x) 
t 

For steady flow, streamlines, streaklines and particle-paths are all the same. 

 

Acceleration 

Just because the velocity at a point isn't changing, this doesn't mean that fluid passing that point isn't 

accelerating. 

 

Example: steady flow along a contracting pipe: 

 

 
Flow in = flow out, so the velocity increases. 

Following a fluid element (Lagrangian) in steady flow, 

a  
du 

 
u dx 

 
u 

u
 

   

dt x dt x 

acceleration = velocity  (velocity gradient) 
 

In general,  

a  u 
u 

 
u 

  

x t 
 

 
In 3D, we write 

Du 
 
u 

 u  u 




 

u 1 u 
2
 




 
Dt t 




2 2 

Note, a  u 
x 

 
2   x

 
, which (for constant acceleration) leads to v    u    2as . 

 

Example 

 

u = kx (with k=2 s
-1

) 

 

 

 

 
 

Velocity gradient = 
u

 

x 

 

 
 

u=10 m s
-1

 u=20 m s
-1

 u=30 m s
-1

 
 

 
x=5 m x=10 m x=15 m 

 

 
= 2 s

-1
 (units are [m/s] / [m]). 

 

Acceleration = u 
u 

. At x = 5 m, the acceleration is 102 = 20 m s
-2

, while at x = 10 m, a = 40 m s
-2

. 
x 
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A2 

C2 Conservation of mass: continuity 

Streamtube 

Bounded by a set of streamlines, so fluid remains within the tube (a "virtual pipe"). 

 

Pipes 

A pipe with changing cross-section: 

 
 

u1 
 

u2 

 

A1 
A2 

 
 

If u1 is the average velocity where the cross-sectional area is A1, and similarly for u2 and A2, then (for 

incompressible flow), 

 

Mass flow in = mass flow out 

 

 u1 A1 =  u2 A2 (kg s
-1

) 

The volume flow rate or discharge Q = u1 A1 = u2 A2 (m
3
 s

-1
). 

Thus u2 = u1(A1/A2). 

 

Example 

A pipe of internal diameter 10mm is connected to a pipe of internal diameter 5mm. If the fluid speed 

entering the larger diameter pipe is 1 m s
-1

, what is the speed of the fluid as it flows through the smaller 

pipe? 

 

 

u1 
  

u2 

A1 

 

 

 

u1 = 1 m s
-1

, A1 = 0.01
2
/4 m

2
, A2 = 0.005

2
/4 m

2
. 

u2 = u1(A1/A2) = 1 (0.01
2
/0.005

2
) = 4 m s

-1
. 
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Going back to streamlines 

Flow speed increases where streamlines converge. 

 

 

[ux increases in x direction, 

uy decreases in y direction. 

In general, 

 
ux 

 
uy 

 
uz 

 0
 

x y z 
 

or   u  0 
 

for incompressible flows.] 

 
 

Acceleration example 

In the example of the contracting flow (u1 = 1 m s
-1

,), if the diameter changes linearly from 10 mm to 

5mm over a distance of 100 mm, what is the velocity and acceleration as a function of distance along 

the contraction? 

 

 

 

 

A2 
u1 

  

u2 

A1 

 

 
 

 

x = 0 m  x = 0.1 m 

d = 0.01 m 

 
d = 0.01 - 0.05x, 

 

 
area = (/4)d

2
, 

d = 0.005 m 

 
=> area = (/4) (0.01 - 0.05x) 

2
. 

 

Q = u A = u1 A1 =1(/4)0.01
2
, constant. 

So u = u1 (A1/A) = 10.01
2
/(0.01 - 0.05x) 

2
 = 1/(1 - 5x) 

2
= (1 - 5x) 

-2
 

 

u 



x 

 
1  5x2 

 101  5x3
 

x 
 

a  u 
u 

 101  5x5
 

x 
 

At x = 0, 0.05, 0.1 m, u = 1, 1.78, 4 m s
-1

, a = 10, 42.1, 320 m s
-2

. 

 

 

 

 

 
   

u 
A 
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C3 Tutorial: Kinematics and continuity 

Streamlines, particles paths and streaklines in unsteady flow. 

 

Example 

 

ux = V0cos(2t/T) uy = V0sin(2t/T) 

What do streamlines look like (at a particular value of t)? 

Release particle at (x,y) = (0,0) at t = 0, what is the path? 

Release dye at (0,0) from t = 0 to t = T, what is the resulting dyeline? 

 

 

 

Continuity in pipe networks 

 

Flow in = flow out. 

 

Flow in (1) 10mm ID, 0.1 m s
-1

. 

Flow out (2) 5mm ID, 0.05 m s
-1

. 

Flow out (3) 7mm ID, what is u3? 

 

 

 

 
(1) 

 

 
(2) 

 

 

 

 

 

 

 
(3) 
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dt 

dt 

v 
2 

v 

dA s+ds 

s 

C Energy and momentum: Principles 

 
D1 Conservation of energy: Bernoulli's Equation 

Steady flow, no friction 
 

Fluid element moves along a fixed streamline (like a bead on a wire). Distance measured along 

streamline denoted by s, velocity along the streamline by v (=ds/dt). 

z 
Volume of fluid element = dA ds 

Mass of fluid element m =  dA ds 
 

Gravitational force = -mg = -g dA ds (downwards). 

 

 

 

 

 

 
 

dz = ds cos











Pressure force (s-direction) = p dA - (p+dp) dA = - dp dA 

 

Gravitational force (s-direction) = -mg cos = -g dA ds cos = -g dA dz 

F = ma, and a = 
dv 

so, 

 dA ds 
dv 

= - dp dA - g dA dz. 

 

dv 
= -

1 dp 
- g 

dz 
.
 

 
 

dv ds dv 

 
 

dv 1 

 

d(v
2
) 

 
 

dt  ds ds 

Now, 
dt 

= 
dt

 
ds 

= v 
ds 

= 
2 ds   

, so we have, 

1 d(v
2
) 1 dp dz 

2 ds 
+ 
 ds 

+ g 
ds 

= 0. 

 

Integrate ds (along streamline) 
 

 
1 p 

2 
+ 
 

+ gz = constant 

Resolving forces in the s-direction 


ds p+dp 

p 
mg 
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

speed v 

height h 

1 
mv

2
 +  mgh = constant 

2 

 

Kinetic energy + potential energy = constant (no friction) 

(This form is energy per unit mass.) 

Analogy 
Particle on a smooth surface 

 

 
 

Head 

The constant H in Bernoulli's Equation is known as the total head (relative to some datum z=0). 

 

Dividing the equation above by g gives Bernoulli's Equation in the form of energy per unit weight or 

"head" (the form most commonly used by engineers): 
 

v
2
 p  

2g 
+ 
g 

+ z = H 

v2 

The kinetic energy term 
2g 

is known as the dynamic head. 

The sum of the potential energy terms 
 p 

+z is known as the piezometric head, while the pressure 

g 

term on its own
 p 

is known as the pressure energy, pressure head or static head. 
g 

 

At constant z, high pressure corresponds to low speeds and low pressure to high speeds. 

 

Power 

The maximum available power = energy per unit time = gHQ. 

 

E.g. a static reservoir 10 m above a hydroelectric power station with a flow rate of 20 m
3
 s

-1
 has a 

maximum available power of 10009.811020 = 1.96 MW (mega watts). 

1 p 
2 

v + 
 

+ gz = gH 

Bernoulli's Equation 

(along streamline) 

2 
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p/g 
ps/g 

Venturimeter 

z2 
A2 u2 

A1 

u1 

z1 

y+y 
y 

y 

m 

D2 Bernoulli's Equation: Applications to flow measurement 

Pitot tube 

 

 

 

 

 

 

 

 
 

u 

 

 

 
 

 

At the tip of the probe there is a stagnation point and the flow speed is zero. The height z is the same 

for both measurements, so we have, 
 

u
2
 p 0

2
 ps 

2g 
+ 
g  

= H = 
2g 

+ 
g 

 
 

u = 

 

 

2(ps - p) 


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2gh 

 A2 




 A2 
1  1

   2 

Continuity (conservation of mass) 

 

Q = u1 A1 = u2 A2,  u2 = u1 (A1/A2). 

Bernoulli's Equation (conservation of energy) 
 

u
2 

p u
2 

p 
   1    1  z1  H    2    2  z2 

2g g 2g g 
 

or,  
u 

2
 u 

2
  p     p 

   2    1       1  z1    2  z2   h 

2g 2g  g     g 


Pressures in the manometer 

Write p0 for the pressure in the manometer at z=0. 

 

p0 = p1 + g(z1 - y) + mgy and p0 = p2 + g(z2 - (y+y)) + mg(y+y) 

(p1 + gz1) - (p2 + gz2) = + gy - mgy - g(y+y) + mg(y+y) = y(m - )g 

h = y(m - )/  y(m/ - ). 
 

Now,  
u

2
  u 

2
  2gh, 

using continuity gives, 

2 1 

 

 

2 
 A2 

u1 
 1  1  2gh, 
 A2 
   2 



and so,  

 
u1 






and Q = u1 A1. However, this assumes no energy loss. In practice we find, 

 

Q  A1 Cd , 

 

 

 

where Cd  0.95 to 0.99 for a smooth contraction. 

Cd is known as the Discharge Coefficient. 

2gh 

 A2 




 A2 
1  1

 2 
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A1 
A2 

D3 Momentum principle: control volumes 

Control volume 

Identify a region of the flow. 

 

Identify all the forces acting on the fluid in this region. 

 

Calculate the rate of change of momentum of the fluid passing through this region (out - in). 

 

Important: velocity, momentum and force are all vector quantities. On the other hand, energy 

equations (like the Bernoulli Equation) and conservation of volume (in pipe flows) can only give 

speeds and not directions. 
 

Example u2
 

Flow in a pipe 
 

 

 

 

 

u1 

 

 

 

 
Rate at which momentum enters the control volume: 

 

1u1Q1 

Rate at which momentum leaves the control volume 

 

2u2Q2 

For incompressible flows 1 = 2 and Q1 = Q2 = Q, so 

(u2 - u1) Q = F 

 

F 

(Total applied force) 

 

(rate of change of momentum = total force) 
 

The total force includes: 
 

Fluid pressure acting at each end of the control volume 
 

p2A2 

 
 

p1A1 

 

 

mg 

gravity 

(body forces) 

 
Forces by the pipe on the fluid 

(frictional and pressure). 

These are equal and opposite to 

the forces by the fluid on the pipe. 
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Flow around a pipe bend 

a) no change in area (A1 = A2) 
u2 

and horizontal (so no effect of gravity) 
 

y 

 

45
u1 

 

x 

Assume no change in pressure (p1 = p2 = p). 
 

Rate of change of momentum  
 

(u2 - u1) Q = (u2 - u1) Au 
 

Where u is the speed (u = |u2| = |u1|), and so u1 = (u, 0) and u2 = (u cos45, u sin45) 

So the x-component of the total force on the fluid is: 

Fx = (u cos45 - u) Au = -(1 - cos45) Au
2
, 

 

and the y-component is  
Fy = u sin45 Au = sin45 A u

2
. 

 

The sum of the pressure forces at the two ends is: 

 

(pA, 0) + (-pAcos45, -pAsin45) = pA(1-cos45, -sin45) 

total force on fluid = pressure force at ends + force by pipe on fluid 

force by fluid on pipe = -force by pipe on fluid = pressure force - total force 

 

= pA(1-cos45, -sin45) - (Fx, Fy) 

= (pA + A u
2
)(1 - cos45, -sin45) 

 

Example 

Pipe carrying water, diameter 10 mm, pressure 10
4
 Pa, flow rate Q = 1.2010

-4
 m

3
 s

-1
. 

A = (/4)(0.01)
2
 = 7.8510

-5
 m

2
. u = Q/A = 1.53 m s

-1
. 

(pA + A u
2
) = 7.8510

-5
  (10

4
 + 10001.53

2
) = 0.968 N. 

 

Force on pipe: 

 

(0.28, -0.68) N 

 
 

If there is a change in area and if we can ignore energy losses, then we can use Bernoulli's Equation to 

find the relation between changes in pressure and changes in speed. 
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free surface 

h = D - d 

D 
Z = D - z 

z 
streamline 

channel bed 

d 

z=0 

D4 Momentum principle: open channel flow 

Conservation of energy (Bernoulli's Equation) - steady flow 

 

 
 

 

If the channel bed and the flow is slowly-varying, so that there are no strong vertical velocities or 

accelerations, then the pressure is approximately hydrostatic: 

 

p = gZ = g(D - z) 

 

Thus the total head (for steady flow) on a streamline through z is given by, 
 

 
u 

2 

 
p 

2g g 
 z  

u
 

2g 
 
g D  z

g 
 z  

u
 

2g 

 
 D . 

 

Note this depends on the height of the free-surface, but not the actual height of the streamline. 

 

If the flow is uniform (the same at all depths in the fluid), we simply have 

u 2 

H   D , 
2g 

for all positions along the channel. (In practice there are frictional losses along the channel.) 

 
 

Momentum: Hydraulic jumps 

 

 

 

 

 

 

u1 

 
 

Control volume 
 

Assume the width, w, is constant. 

 

Q = wu1h1 = wu2h2, and so, u2 = u1h1/h2. 

h1 u2 
h2 

H 
2 2 
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1 1 2 2 2 

p = gZ 
p = gZ 

Pressure forces: hydrostatic pressure giving a horizontal force at each end. 

 

 

Total force (per unit width), 

h1 h2 
1

 

F =  gZ dZ  - gZ dZ  = 2  g(h1
2
 - h2

2
) = u1h1 (u2 - u1) 

0  0 

 

1 
g(h 

2
 - h 

2
) = u 

2
h (h /h 

 
- 1) 

2 1 2 

 
 

u1 = 

1  1  1  2 

 

 

 

, 

 

where r= h2/h1 is the size of the jump. 

Note that for a jump (r>1), we need u1> 

 
("supercritical flow"). 

Energy loss 
 

 
H1 = u 

2
/(2g) + h , H = u 

2
/(2g) + h . 

 

This gives the head loss:  
H1 - H2 = (h1/4r) (r - 1)

3
. 

 

Power loss is given by,  
 

g (H1 - H2)Q. 

 

 

Froude number 

The ratio Fr = u/ gh is known as the Froude number. Since gh is the speed of surface waves, the 

Froude number can be thought of as analogous to the Mach number, in that it is a ratio of a flow speed 

to a wave speed. 

 

Fr > 1 Supercritical flow 

Fr < 1 Subcritical flow 

Fr = 1 Critical flow 

gh1 2
r( 

1 
1+r) 

gh1 
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D5 Tutorial: forces and hydraulic jumps 

 
(a) Flow in a bend (no energy losses) 

 

Water flows at a rate of 0.1 m
3
 s

-1
 through a contracting U-tube (in the horizontal plane) into the 

atmosphere as shown in the figure. What is the force on the tube? (You may ignore energy losses.) 

 
 

Outlet diameter 50 mm 

 

 

 

Inlet diameter 75 mm 

 

 

 

(b) Hydraulic jump 

 

Flow in a 150 mm wide channel jumps from a depth of 50 mm to 150 mm. What is the flow rate and 

what is the rate of energy loss at the jump? 
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U 

D 



V 

D Pipeflow 

 
E1 Reynolds Experiment: Laminar and turbulent flow 

Osborne Reynolds (1842-1912), Professor at Manchester University 

Derived an expression for the relative size of viscous and other accelerations (Reynolds number: see 

below) and demonstrated the importance of this relation by examining the nature of flow in a pipe. 

 

 

 

dye 

injected 

 

 

 

 

 
dye 

injected 

 

"direct" (laminar) motion 

 

 

 

 

 

 
"sinuous" (turbulent) motion 

 

 

 
Reynolds Number (Re) 

Consider flow in a pipe of diameter D with typical speed U. 
 

Volume of fluid element 

D 
V = (/4)D

2
 dx. 

So mass of fluid element 

 

m = (/4)D
2
 dx. 

 
Area of fluid element in contact 

dx with pipe wall 
 

D dx. 
 

Typical size of velocity gradient  
∂u 

~ 
U 

∂r D 
 

So typical size of viscous force on fluid element (ignore ) 
 

E ~ 
 U 

D dx ~  U dx 

 

Thus accelerations due to viscous forces (again ignoring constants) 
 

a = F /m ~ 
 U dx

 
= 
 U 

,
 

 
where  = 




V V 

 

 

 

is the kinematic viscosity. 

D
2
 dx D

2
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

But we can find another scale for accelerations 

 
∂u U U

2
 

a ~ u
∂x 

~ U 
D 

= 
D 

. 

The ratio of this to the viscous acceleration is given by 
 

U2 D2 

D  U 
=

 

U D  
≡ Re 

 

The Reynolds number (usually denoted by Re) is the ratio of inertial to viscous accelerations and is 

equal to a velocity scale  length scale / kinematic viscosity. Note that the dimensions cancel out ( 

has units m
2
 s

-1
), so that the Reynolds number is a dimensionless number and will be the same 

whatever units are used to measure lengths and times. 

 

High Re - Turbulent flow (Re > 4000 for typical pipe flows). Inertial forces dominate. 

Low Re - Laminar flow (Re < 2000 for typical pipe flows). Viscous forces dominate. 

At intermediate Re the flow is "transitional" and may have intermittent "bursts" of turbulence in an 

otherwise smooth flow. 

 

For flow in a pipe, the nature of the flow doesn't depend on the individual parameters (U, D, ) but on 

the combination Re (the velocity scale used is usually the average velocity U=Q/A). 

 

Examples 

Flow rate Q = 0.01 m
3
 s

-1
 of water ( = 10

-6
 m

2
 s

-1
), in a pipe of diameter D = 100 mm. What is the 

Reynolds number and the expected type of flow? 

 

A = (/4) 0.1
2
 = 7.8510

-3
 m

2
. U = Q/A = 1.27 m s

-1
. 

 

Re = UD/  = 1.270.1/10
-6

 = 127 000, so the flow will be turbulent. 

 

Flow rate Q = 10
-6

 m
3
 s

-1
 (= 1 cm

3
 s

-1
) of olive oil ( = 10

-4
 m

2
 s

-1
), in a pipe of diameter D = 5 mm. 

What is the Reynolds number and the expected type of flow? 

 

A = (/4) 0.005
2
 = 1.9610

-5
 m

2
. U = Q/A = 0.051 m s

-1
. 

 

Re = UD/  = 0.0510.005/10
-4

 = 2.6, so the flow will be laminar. 

 

Most fluid flows in civil engineering are at high Reynolds number (an exception is flows through 

porous media, e.g. groundwater, water filtration). 

 

 

Flow U (m s
-1

) L (m)  (m
2
 s

-1
) Re 

Water in a domestic pipe 2 0.01 10-6 
210

4
 

Air flow past a building 5 10 1.510
-5

 3.310
6
 

River flow 2 5 10-6 10
7
 

Air flow through a doorway 0.5 2 1.510
-5

 6.710
4
 

Water percolating through sand 610
-5

 10-4 10-6 
610

-3
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∂r 

E2 Pipeflow: laminar flow 

Low Re, viscous forces are important. 

 

Laminar flow in a pipe (Poiseuille Flow) 

 

 

u(r)  
centre-line 

 

 

 

 
 

Smooth, steady flow. Expect velocity u to be a function of radius r, with u = 0 at r = R (no flow at the 

pipe wall) but do not expect the speed to vary along the pipe (at a given radius). 

 

Consider the forces on a cylindrical fluid element within the pipe: 

 

Area of flat faces 

A = r
2
 

 

Area of curved surface 

 

S = 2r dx 
 

 

Volume  
V = r

2
 dx 

 

Pressure forces 

 
 

pA (p+dp)A 

 

Total pressure force = -dp A = -dp r
2
. 

Viscous forces 

The viscous force depends on the shear at 

that radius. 
 

 

 

 
So total force =  

∂u 
S =  

∂u 
 2r dx 

Force per unit area (viscous stress) 

 

∂u 

∂r 

∂r ∂r 

Here velocity decreases as r increases, so this is negative - the viscous forces tend to slow the fluid 

down. 

 

For steady flow which isn't changing along the pipe (du/dx = 0), the sum of the viscous and pressure 

forces must be zero. 

-dp r
2
 +  

∂u 
 2r dx = 0 

dx 
r 

= 



G F Lane-Serff 27 18-Feb-09  

dx 

u = - (R - r ) 



Rearranging gives, 

2 
∂u dp 

∂r 
= r

dx 

If the pressure gradient driving the flow along the pipe is constant G = 
dp 

, then, 

∂u 
= 

Gr 
.
 

∂r 2


If the flow is being driven in the x-direction we expect the pressure to decrease as x increases, so G 

would be negative. 
 

Gr
2
 

Integrating this up we get u = 
4 

+ constant. We find the constant by using u(R) = 0: 

F 2 2 

4


The velocity profile for laminar flow is parabolic. This flow is known as Poiseuille flow. The total 

flow rate is given by, 
 

R 
GR

4
 

Q = u 2r dr  = - 

0 
8   

.
 

 

The average flow speed U = Q/A is 

GR
2 

1 
 

 

U = - 
8 

. = 
2 

Umax. 

For viscous flows, velocity and flow rates are proportional to the pressure gradient. 

 

Note that energy is lost and Bernoulli's Equation no longer applies (or has to be adjusted to include 

energy losses). 

 

Example: viscous flow down inclined tube 
 

 

Here there is no significant pressure gradient driving the flow, but the component of gravity along the 

tube has the same effect: 
 

g sin  = -G 

 

For d = 3 mm,  = 10, with water we get, 
 

GR
2
 

 
 

g sin  d
2
 

 
 

g sin  d
2
 

 
 

9.81 sin10 0.003
2
 -1 

 
 

U = - 
8   

= 32 
=

 32 
=

 32x10-6 = 0.47 m s . 
 

Check Reynolds number:  
Re = UD/ = 1410 (just about laminar). 
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E3 Flow from static reservoir (no energy losses) 

Now consider the case where we can ignore viscosity and energy losses. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

u 
 

 
 

If the water is discharged into the atmosphere, then the pressure there is atmospheric (approximately 

the same as at the surface of the reservoir). Bernoulli's Equation reduces to, 
 

u2 

h = 
2g 

, so u = 
. (This is the speed a body falling from height h would have.) 

 

The total head is given by the height of the water surface in the static reservoir, i.e. H = h. 
 

u
2
 p  

H = 
2g 

+ 
g 

+ z, 

where p is the gauge pressure (relative to atmospheric). 

 

Thus in the pipe, the pressure is simply given by 

 

p = - gz. 

 

Example 

 

A 
2 m 

 

 

 

3 m 

 

 

 

 

 

Pipe diameter 200 mm. 4 m 

2gh 

z=0 

h 
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2gh 

2gh 

4 

Height of surface above outlet H = 3 + 4 = 7 m. 
 

Speed of flow u = = 11.7 m s
-1

. Area A = (/4)d
2
 = 0.314 m

2
. 

 

Thus flow rate Q = 11.70.314 = 3.67 m
3
 s

-1
 ( = 3670 litres/s). 

 

Pressure at A (relative to atmospheric) 

 

p = - gz = -10009.81(4+3+2) = -88.3 kN m
-2

 = -88.3 kPa. 

 

 
(Note: for total heights over about 10 m, predicted pressures would be less than absolute zero, which is 

not possible.) 

 

Example 

An open rectangular tank 2m3m1m high is full of water. It is emptied through a tube of diameter 

15mm, discharging to the atmosphere 2m below the bottom of the tank. How long does it take to 

empty? 

 

 

 

 

h 
1 m 

 

 

 

2 m 

 

 

 

 

When the depth of water in the tank is h, the speed of the water coming out of the tube is given by, 
 

u = , 
 

(assuming the vertical speed of the water surface is negligible and ignoring any energy losses). 
 

 
The flow rate is Q = ua = 

 
d

2
, where d = 0.015 m and a is the tube area. 

 

The rate at which the water level descends is Q/A where A is the area of the tank (A = 6 m
2
). 

 
dh 

  
Q 
 


 

  
0.015

2
 or 

dh 
= - 1.30510

-4
 . 

  
 dt A 

6 
 

4 
 dt 

So 
h2 

 

tte 

 h 
1/

 
2
dh   1.305 10

4
 dt . 

h3 t 0 
 

Thus 2(3
1/2

 - 2
1/2

) = 1.30510
-4

 te or te = 4870 s (approximately one hour twenty minutes). 

h 

2g7 

2gh 
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   

     

E4 Turbulent flow and head loss 

Head loss in pipes: Darcy's formula 

In Civil Engineering applications, flows are usually at high Reynolds numbers. Conservation of energy 

(Bernoulli's Equation) gave 
u

2
 p  

 
with H a constant. 

H = 
2g 

+ 
g 

+ z, 

For flow in a pipe of constant diameter u is constant and so the dynamic head is constant. If Bernoulli's 

Equation applied we would expect the piezometric head to also remain constant. However, 

experiments show that the piezometric head falls, with the fall proportional to the length of the tube and 

the square of the speed (at high Reynolds number). 

 

This can be thought of as a drop in the total head. For a pipe of length l and diameter d, the drop is 

found to be, 

l u
2
 

hf = 
 d  2g

,
 

where  is a constant, known as the friction factor. This expression is know as Darcy's formula. (It is 

convenient to keep it as a multiple of the dynamic head.) The constant  depends on the relative 

roughness of the pipe (kS/d, where kS, or just k, is the size of the roughness - "bumps") and on the 

Reynolds number of the flow. For very large values of Re,  becomes independent of Re and is 

approximately given by, 
 

 = (2 log10(3.7 d/kS))
-2

 
 

Darcy's formula is sometimes expressed as  
4fl u

2
 

hf = 
 d  2g

,
 

where f=4. WARNING: Sometimes (especially in the USA) the symbol f is used for , giving a 

different f from that we've defined (by a factor of 4). When using published graphs and tables it is 

important to check which version of f or  is used. 
 

Example 

For galvanized steel, the roughness scale kS = 0.15 mm. For a pipe of diameter 100 mm, d/kS = 667. 

Thus the friction factor (for high Re) is  = 0.0217. 

Typical roughness scales kS (mm) 

Riveted steel 1 - 10 

Concrete 0.3 - 3 

Wood stave 0.2 - 1 

Cast iron 0.25 

Galvanized steel 0.15 

Steel or wrought iron 0.045 

Drawn tubing 0.0015 

 

Roughness tends to increase with age because of deposits and corrosion. 

 

Friction factor for laminar flow 

If there is a head loss of hf, then the corresponding pressure change is simply 
 

p = hf g. 

This gives a pressure gradient (along a pipe of length l) of 

G = - 
p

 hf g 

l 
= - 

l   
. 
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For low Re, laminar flow, we found the average velocity was given by 
 

 
U = - Gd

2
 hf g d

2
 = . 

 

32 32  l 
 

Rearranging gives  

 
32lU 

 
l 64 U

2







l 64 U

2






hf = 
gd

2
   

= 
d  Ud  g 

= 
d Re g



Which is equivalent to Darcy's formula with  =64/Re. 

 

Moody's Diagram 

At low Re (laminar flow) the pressure drop (and head loss) along a pipe is proportional to the velocity, 

while at very large Re the pressure drop is proportional to the square of the velocity. For a given 

relative roughness (kS/d), a plot of friction factor  as a function of Reynolds number will have 

=64/Re at low Re, tending towards a constant =(2 log10(3.7 d/kS))
-2

 at high Re. At intermediate 

values of Re there is a transition between the laminar and very turbulent flows. For very smooth pipes, 

where the boundary layer is larger than the roughness elements, =0.316Re
-1/4

 gives good agreement 

with experiment up to Re = 10
5
. A Moody Diagram shows the relationship between  and Re for 

various relative roughnesses (kS/d). The plot is usually on logarithmic axes, so that the laminar formula 

=64/Re is a straight line. 

 

(WARNING: If you see a plot where the laminar formula is friction factor =16/Re, then this is a plot of 

f =4, as described earlier. Older exam papers also give f instead of , and you will need to use =4f 

to get the correct results.) 

 

For the present course, we will assume that the flow can be described by a constant  (rough pipe 

flow), or by laminar flow. At intermediate values calculations become more complicated because the 

flow depends on , but  depends on Re which in turn depends on the flow. Thus an iterative 

procedure is usually needed to calculate the flow. Formulae that match the smooth pipe flow equation 

to the high Re (constant ) values and the methods of using them will be dealt with in later courses. 

 

Example 

A flow Q = 0.1 m
3
 s

-1
 is flowing through a galvanized steel pipe of diameter 100 mm. What is the head 

loss over a distance of 15 m? 

 

A = (/4) 0.1
2
 = 7.8510

-3
 m

2
, kS = 0.15 mm,  = 0.0217. u = Q/A = 12.7 m s

-1
 

 

l u
2 






0.021715  12.7
2
 


hf = 

 d  2g 
= 


Power loss = Q g hf = 26.3 kW. 

0.1  29.81 
= 26.8 m

 

 

 

 
 

dynamic head 
Total head = dynamic head + piezometric head 

 

piezometric head 
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   

   

2g 

u 

2g 

2g 

k = 0.5 k = 1.0 
k ≈ 0 

E5 Pipeflow: other head losses 

Head loss coefficient 

We've already seen that the head loss along a pipe of length l is given by 

 
l u

2
 

hf = 
 d  2g

.
 

There are other head losses (energy losses) caused by enlargements, contractions, bends, valves and 

other fittings. These are generally expressed in the form 

 
u2 

hl = k 
2g

.
 

In principle, the head loss coefficient, k, varies with Re but at large Re the head loss coefficient is 

effectively constant. (Warning: don't confuse the non-dimensional head loss coefficient k with the 

roughness length also unfortunately often denoted by k or kS.) 

 

Abrupt enlargement 

 

u2 
  

u1 

 

 

 A1
2 u1

2
 

 
 

A2 

 
A2 

 


2 u2

2 
 

 

hl = 1 - 
A2


2g 

= A1 
- 1   2g 

u 2 
 

 

(Proof later in F1.) As A2 → ∞, the "exit loss" (e.g. from a pipe into a reservoir) hl → 
1
 

 

 

Abrupt contraction 
 

u2 

 
 

u1 
 

 

 
hl = k 

2 2 
2
 . As A1 → ∞, the "entry loss" (e.g. from a reservoir into a pipe) hl → 0.5 

2
 

 
 

d2/d1 (diameter ratio) 0 0.2 0.4 0.6 0.8 

k 0.5 0.45 0.38 0.28 0.14 
 

Other entry losses 

 

   
 

A1 

A1 

A2 

. 

u 
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Pipe fittings, typical losses 

 

Fitting 90 bend 90 corner 45 bend T (in-line) T (side) 

k 0.9 1.1 0.4 0.4 1.2 

 

 

Example 

A 

 

 

 
A reservoir is drained through a 150 mm 

diameter pipe, 500 m long, with an exit to 

the atmosphere 10 m below the water 

surface in the reservoir. What is the 

discharge? (The friction factor for the 

pipe is  =0.020.) 
 

10 m 

B 

 
 

Energy at A = Energy at B + Energy losses from A to B 

HA = HB + Hlosses 

Hlosses = entry loss + pipe loss (assume no significant loss on exit to atmosphere) 
 

u2 u2 
 

  

l u
2
 

 
 10 = 

2g 
+ kentry 2g 

+ 
 d  2g 

 

u2 u2 
 

  

0.020500 u
2
 

 
 

10 = 
2g 

+ 0.5 
2g 

+  0.15 
 

u2 
 

 

 2g 

10 = (1 + 0.5 + 66.7) 
2g

 

u2 
-1 

2g 
= 10/68.2 = 0.147, so u = 1.70 m s . 

This gives Q = 0.030 m
3
 s

-1
. 

(Check Re = ud/ = 2.610
5
.) 

Note that most of the losses come from flow along the pipe. In practice ignoring entry and exit losses, 

and losses at bends and fittings does not usually lead to significant errors in most civil engineering 

applications. 
 

Junctions 

 
A 

 

 
 

Also QA = QB + QC 

 

B 

+ Hlosses(J to B) 

HA = HJ + Hlosses(A toJ) 

J 

HJ = HB 

HJ = HC + Hlosses(J to C) 
C 
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E6 Tutorial: Pipeflow 

Calculate the flow between the two reservoirs connected as shown. 

 

 

 
 

 

8 m 

 
 

 
pipe 1 

pipe 2 

 

 

 
 

Pipe 1 is 200 m long, diameter 100 mm,  = 0.020 

 

Pipe 2 is 300 m long, diameter 150 mm,  = 0.012 
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Hydraulic pump 
 

There are typically three types of hydraulic pump constructions found in mobile hydraulic 
applications. These include gear, piston, and vane; however, there are also clutch pumps, dump 
pumps, and pumps for refuse vehicles such as dry valve pumps and Muncie Power Products’ Live 
PakTM.  

The hydraulic pump is the component of the hydraulic system that takes mechanical energy and 
converts it into fluid energy in the form of oil flow. This mechanical energy is taken from what is 
called the prime mover (a turning force) such as the power take-off or directly from the truck 
engine.   

With each hydraulic pump, the pump will be of either a uni-rotational or bi-rotational design. As 
its name implies, a uni-rotational pump is designed to operate in one direction of shaft rotation. 
On the other hand, a bi-rotational pump has the ability to operate in either direction.  

 
GEAR PUMPS  

For truck-mounted hydraulic systems, the most common design in use is the gear pump. This 
design is characterized as having fewer moving parts, being easy to service, more tolerant of 
contamination than other designs and relatively inexpensive. Gear pumps are fixed displacement, 
also called positive displacement, pumps. This means the same volume of flow is produced with 
each rotation of the pump’s shaft. Gear pumps are rated in terms of the pump’s maximum 
pressure rating, cubic inch displacement and maximum input speed limitation.  

Generally, gear pumps are used in open center hydraulic systems. Gear pumps trap oil in the areas 
between the teeth of the pump’s two gears and the body of the pump, transport it around the 
circumference of the gear cavity and then force it through the outlet port as the gears mesh. 
Behind the brass alloy thrust plates, or wear plates, a small amount of pressurized oil pushes the 
plates tightly against the gear ends to improve pump efficiency.    
   

PISTON PUMPS 

When high operating pressures are required, piston pumps are often used. Piston pumps will 
traditionally withstand higher pressures than gear pumps with comparable displacements; 
however, there is a higher initial cost associated with piston pumps as well as a lower resistance to 
contamination and increased complexity. This complexity falls to the equipment designer and 
service technician to understand in order to ensure the piston pump is working correctly with its 
additional moving parts, stricter filtration requirements and closer tolerances. Piston pumps are 
often used with truck-mounted cranes, but are also found within other applications such as snow 
and ice control where it may be desirable to vary system flow without varying engine speed.  

A cylinder block containing pistons that move in and out is housed within a piston pump. It’s the 
movement of these pistons that draw oil from the supply port and then force it through the outlet. 

https://www.munciepower.com/products/fluid_power/dump_pumps
https://www.munciepower.com/company/blog_detail/open_and_closed_center_hydraulic_systems
https://www.munciepower.com/products/fluid_power/piston_pumps
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The angle of the swash plate, which the slipper end of the piston rides against, determines the 
length of the piston’s stroke. While the swash plate remains stationary, the cylinder block, 
encompassing the pistons, rotates with the pump’s input shaft. The pump displacement is then 
determined by the total volume of the pump’s cylinders. Fixed and variable displacement designs 
are both available.  
  

 
 

Main components of reciprocating pump 

Reciprocating pump has wide application and to clear the basic idea it is necessary to know the 
basic parts. 

The basic parts along with its function; 

 Water reservoir - it is not a part of reciprocating pump, however, it is the main source where 
from the reciprocating pump takes the water. It may be a source of other fluid as well. 

 Strainer - It removes all impurities from the liquid to avert chocking the pump. 
 Suction Pipe - It is a pipe by which pump takes the water from the reservoir. 
 Suction Valve - It is a non-return type valve installed on the suction pipe and helps to flow 

from reservoir to pump not the vice versa. 
 Cylinder or liquid cylinder - The main component where pressure is increased. It is a hollow 

cylinder with coatings. It consists of a piston along with piston rings. 
 Piston or plunger and Piston rod - Piston is directly connected to a rod that is the piston rod. 

This piston rod is again connected to the connecting rod. Piston makes the reciprocating 
motion in forward and backward motion and creates pressure inside the cylinder. 

 Piston rings - Piston rings are small but one of the vital parts to protect the piston surface as 
well as cylinder inner surface from wear and tear. It helps to operate the pump smoothly. 

 Packing - Packing is necessary for all pumps, to have a proper sealing between cylinder and 
piston. It helps to stop leakage. 

 Crank and Connecting rod - Crank is connected to the power source and connecting rod 
makes connection between crank and piston rod. These component helps to change the 
circular motion into linear motion. 

 Delivery valve (non-return valve) - Like suction valve delivery valve is also non return type 
and it helps to built up the pressure. It protect the pump from back flow. 

 Delivery pipe - It helps to supply the fluid at destination. 
 Air Vessel - Few reciprocating pumps may have an air vessel, it helps to reduce the frictional 

head or acceleration head. 

Reciprocating Pump Application[edit] 

Application of Reciprocating pumps, are as follows: 

https://www.munciepower.com/company/blog_detail/fixed_and_variable_displacement_piston_pumps
https://en.wikipedia.org/w/index.php?title=Reciprocating_pump&action=edit&section=3
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 Vessel, pipe, tank, tube, condensate pipe, heat exchanger etc. cleaning, 
 Oil drilling, refineries, production, disposal, injections. 
 Pneumatic pressure applications. 
 Vehicle cleaning. 
 Sewer line cleaning. 
 Wet sandblasting 
 Boiler feeding 
 High-pressure pumps for the RO system (Reverse osmosis) 
 Hydro testing of tanks, vessels, etc. 
 Firefighting system. 
 Wastewater treatment system. 

Examples[edit] 

Examples of reciprocating pumps include 

 Wind mill water and oil pump 
 Hand pump 
 Axial piston pump 

 
 

 

 

 

 

 

  

https://en.wikipedia.org/w/index.php?title=Reciprocating_pump&action=edit&section=4
https://en.wikipedia.org/wiki/Wind_mill
https://en.wikipedia.org/wiki/Hand_pump
https://en.wikipedia.org/wiki/Axial_piston_pump
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What is a centrifugal pump? 

A centrifugal pump is a mechanical device designed to move a fluid by means of the transfer of 
rotational energy from one or more driven rotors, called impellers.  Fluid enters the rapidly 
rotating impeller along its axis and is cast out by centrifugal force along its circumference through 
the impeller’s vane tips.  The action of the impeller increases the fluid’s velocity and pressure and 
also directs it towards the pump outlet.  The pump casing is specially designed to constrict the 
fluid from the pump inlet, direct it into the impeller and then slow and control the fluid before 
discharge. 

How does a centrifugal pump work? 

The impeller is the key component of a centrifugal pump.  It consists of a series of curved 
vanes.  These are normally sandwiched between two discs (an enclosed impeller).  For fluids with 
entrained solids, an open or semi-open impeller (backed by a single disc) is preferred (Figure 1). 

 

Fluid enters the impeller at its axis (the ‘eye’) and exits along the circumference between the 
vanes.  The impeller, on the opposite side to the eye, is connected through a drive shaft to a motor 
and rotated at high speed (typically 500-5000rpm).  The rotational motion of the impeller 
accelerates the fluid out through the impeller vanes into the pump casing. 

There are two basic designs of pump casing: volute and diffuser.  The purpose in both designs is to 
translate the fluid flow into a controlled discharge at pressure. 

In a volute casing, the impeller is offset, effectively creating a curved funnel with an increasing 
cross-sectional area towards the pump outlet.  This design causes the fluid pressure to increase 
towards the outlet (Figure 2). 

https://www.michael-smith-engineers.co.uk/pumps/centrifugal-pumps
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The same basic principle applies to diffuser designs.  In this case, the fluid pressure increases as 
fluid is expelled between a set of stationary vanes surrounding the impeller (Figure 3).  Diffuser 
designs can be tailored for specific applications and can therefore be more efficient.  Volute cases 
are better suited to applications involving entrained solids or high viscosity fluids when it is 
advantageous to avoid the added constrictions of diffuser vanes.  The asymmetry of the volute 
design can result in greater wear on the impeller and drive shaft. 
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What are the main features of a centrifugal pump? 

There are two main families of pumps: centrifugal and positive displacement pumps.  In 
comparison to the latter, centrifugal pumps are usually specified for higher flows and for pumping 
lower viscosity liquids, down to 0.1 cP.  In some chemical plants, 90% of the pumps in use will be 
centrifugal pumps.  However, there are a number of applications for which positive displacement 
pumps are preferred. 

What are the limitations of a centrifugal pump? 

The efficient operation of a centrifugal pump relies on the constant, high speed rotation of its 
impeller.  With high viscosity feeds, centrifugal pumps become increasingly inefficient: there is 
greater resistance and a higher pressure is needed to maintain a specific flow rate.  In general, 
centrifugal pumps are therefore suited to low pressure, high capacity, pumping applications of 
liquids with viscosities between 0.1 and 200 cP. 

Slurries such as mud, or high viscosity oils can cause excessive wear and overheating leading to 
damage and premature failures. Positive displacement pumps often operate at considerably lower 
speeds and are less prone to these problems. 

Any pumped medium that is sensitive to shearing (the separation of emulsions, slurries or 
biological liquids) can also be damaged by the high speed of a centrifugal pump’s impeller.  In 
such cases, the lower speed of a positive displacement pump is preferred. 

A further limitation is that, unlike a positive displacement pump, a centrifugal pump cannot 
provide suction when dry: it must initially be primed with the pumped fluid.  Centrifugal pumps 
are therefore not suited to any application where the supply is intermittent.  Additionally, if the 
feed pressure is variable, a centrifugal pump produces a variable flow; a positive displacement 
pump is insensitive to changing pressures and will provide a constant output.  So, in applications 
where accurate dosing is required, a positive displacement pump is preferred. 

 

 

 

https://www.michael-smith-engineers.co.uk/resources/useful-info/when-to-select-a-positive-displacement-pump

