PNS SCHOOL OF ENGINEERING & TECHNOLOGY

NISAMANI VIHAR, MARSHAGHAI, KENDRAPARA

DEPARTEMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

1ST INTERNAL ASSESSMENT EXAM QUESTIONS & ANSWER

SUB-Digital Signal Processing (TH-3)

PREPARED BY :

ER. ADITYA NARAYAN JENA

LECTURER IN ETC

PNS SCHOOL OF ENGINEERING & TECHNOLOGY Internal Assessment : 2023 Subject : Digital Signal Processing (Th-3) 6th Semester

Branch : Electronics & Telecommunication Engineering

Time	:1	Hour	
------	----	------	--

F.M.: 20 [2 x 5]

[5 x 2]

- 1. Answer all questions.
 - (a) Define Signal Processing.
 - (b) Define Discrete Time System.
 - (c) Define Periodic & Aperiodic Signals.
 - (d) Write down different types of elementary discrete time signals.
 - (e) Write down any 2 properties of convolution.

2. Answer questions any Two.

- (a) State & explain Sampling Theorem.
- (b) Determine whether the system is time-variant or invariant of the given system $y(n) = x(\frac{n}{2})$?
- (c) Determine the convolution Sum of 2 sequences. $x(n) = \{1, 1, 2, 1\}$ and $h(n) = \{1, 2, 3, 1\}$?

1-(a) Signal processing

 \rightarrow It is any operation that Changes the characteristics of a signal.

(b) <u>Discrete Time System</u>

 \rightarrow It is a device or algorithm, that operates on discrete time signal, according to some well defined Rules.

(c) <u>Periodic Signal</u>

 \rightarrow If x(N+n)=x(n) [N is the period]

Aperiodic Signal

 \rightarrow If x(N+n) \neq x(n)

(d) Elementary DTS

- \rightarrow Unit Step signal.
- \rightarrow Unit Impulse signal.
- \rightarrow Unit Ramp signal.

(e) Properties of convolution

Commutative-

x(n) * h(n) = h(n) * x(n)

Associative

[x(n) * h1(n)] * h2(n)=x(n) * [h1(n)*h2(n)]

2-(a) <u>Sampling theorem</u>

 \rightarrow A continuous time signal may be completely represented in this samples and recovered back, if $f_s \ge 2f_m$.

Where fs = Sampling frequency

fm = Maximum frequency component.

- \rightarrow Process of converting on Analog signal in to a discrete signal.
- \rightarrow Time taken by the next sample to occur, Known as sampling period.
- \rightarrow Reciprocal of sampling period known as sampling Rate.
- \rightarrow Quantization refers to the use of a finite set of amplitude levels are nearest to a particular sample value of the message signal.

2-(b) Given system

Since $y(n,k) \neq y(n-k)$; System is Time variant.

2-(c) Given

$$x(n) = \{1, 1, 2, 1\}$$

$$h(n) = \{1, 2, 3, 1\}$$

$$X(n)$$

$$1 \quad 1 \quad 2 \quad 1$$

$$1 \quad 1 \quad 2 \quad 1$$

$$h(n) \quad 2 \quad 2 \quad 2 \quad 4 \quad 2$$

$$3 \quad 3 \quad 3 \quad 6 \quad 3$$

$$1 \quad 1 \quad 1 \quad 2 \quad 1$$

y(n)= {1,3,7,9,9,5,1}