PNS SCHOOL OF ENGINEERING & TECHNOLOGY

NISAMANI VIHAR, MARSHAGHAI, KENDRAPARA

DEPARTEMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

1ST INTERNAL ASSESSMENT EXAM QUESTIONS & ANSWER

SUB-Microprocessor and Microcontroller (TH-3)

PREPARED BY :

ER. ADITYA NARAYAN JENA

LECTURER IN ETC

PNS SCHOOL OF ENGINEERING & TECHNOLOGY Internal Assessment: 2023

Subject : Microprocessor & Microcontroller (Th-3) 4th Semester

Branch : Computer Science / ETC Engineering

Time	e:1Hou	ır F.M. : 20
1.	Ansv	ver all the questions . $[2 \times 5]$
	(a)	Define Microprocessor. Give any two difference between
		Microprocessor and Microcomputer.
	(b)	What is the function of stack pointer?
	(c)	Why address bus is unidirectional?
	(d)	What is the function of HOLD & HLDA Pin?
44.5	(e)	What is the difference between MOV and MVI instruction.

2. Answer the following questions (any Two) \cdot [5 x 2]

- (a) Explain 1-byte, 2-byte, 3-byte instructions with example.
- (b) Explain the different types of Addressing Modes used in 8085 Microprocessor.
- (c) Explain various Arithmetic and Logical instructions with examples.

* * *

1-

(a) when a single CPU is built on a single IC chip, that IC chip is known as microprocessor.

Microprocessor

- \rightarrow IC chip
- \rightarrow Only CPU

Microcomputer

- \rightarrow Digital computer.
- \rightarrow Input device, Memory, Output devices, CPU.

(b) Stack pointer

- \rightarrow It is a 16-bit SPR.
- \rightarrow It is used to store the address of stack Top.

(c) In address bus, the address bits are flows from microprocessor to the peripherals so A-Bus is Unidirectional.

(d) HOLD-When microprocessor requires A-Bus and D-Bus

HLDA-HOLD Acknowledgement signal.

(e) <u>MOV</u>

- \rightarrow 1-byte instruction.
- \rightarrow Move operation.

(e) <u>MVI</u>

 \rightarrow 2-byte instruction.

 \rightarrow Move immediate operation.

2-

(a) <u>1-byte</u>

→ Mnemonic followed by Registers. For e.g.; MOV B,C

<u>2-byte</u>

→ Mnemonics followed by 8-bit date. For e.g.; MVI B,17H.

<u>3-byte</u>

→ Mnemonics followed by 16-bit data, or address. For e.g.; JMP 2085H

(b) Addressing Modes

- (i) Direct- Address of data is given. For e.g.; STA 2037H
- (ii) Register- Data is in Registers.

For e.g.; MOV C,D

(iii) Register Indirect -Data is in Register Pair.
For e.g.; LXI H,2500
MOV A,M →Register Indirect

HLT

- (iv) Immediate Data is given. For e.g.; MVI B,18H
- (v) Implicit- Data is in Accumulator. For e.g.; CMA, RAR, RAL
- 2-

(c) <u>Arithmetic Instructions</u>

ADD B \rightarrow Adds contents of B into accumulator. SUI 37H \rightarrow Subtract 37H from accumulator. INR c \rightarrow Contents of C increases by1.

Logical Instructions

ANA $B \rightarrow$ Logical AND B With Accumulator.

ORI 45H \rightarrow Logical OR with 45H.

 $\mathsf{CMA}{\rightarrow}$ Complement the contents of Accumulator.