	FIND SCI	HOOL OF ENGG. & TECH., MARSHAGHAI			
		DEPARTMENT OF ELECTRICAL ENGINEERING			
LESSON PLAN					
BRANCH : ELECTRICAL	SEMESTER : 5TH	NAME OF THE TEACHING FACULTY :			
ENGINEERING	511	MR. ADITYA NARAYAN JENA			
SUBJECT :	NO. OF DAYS	SEMESTER FROM DATE: 01.08.2023 TO 30.11.2023			
DIGITAL ELECTRONICS & MICROPROCESSOR	PER WEEK CLASS ALLOTTED : 05				
WEEK	CLASSDAY	THEORY TOPICS			
1 st	1 st	1.BASIC OF DIGITAL ELECTRONOICS			
		INTRODUCTION TO DIGITAL ELECTRONICS			
	2 nd	NUMBER SYSTEM(BINARY,OCTAL,DECIMAL,HEXADECIMAL)			
	3 rd	CONVERSION OF BINARY/OCTAL/HEXADECIMAL NUMBER SYSTEM INTO DECIMAL NUMBER SYSTEM			
	4 th	CONVERSION OF DECIMAL NUMBER SYSTEM INTO BINARY/OCTAL/HEXADECIMAL NUMBER SYSTEM			
	5 th	CONVERSION OF BINARY TO OCTAL AND OCTAL TO BINARY,BINARY TO HEXADECIMAL AND HEXADECIMAL TO BINARY NUMBER SYSTEM,CONVERSION OF OCTAL INTO HEXADECIMAL AND HEXADECIMAL INTO OCTAL NUMBER SYSTEM			
	1 st	BINARY ARITHMATIC (ADDITION, SUBTRACTION, MULTIPLICATION, DIVISION)			
2 ND	2 nd	1'S COMPLEMENT AND 2'S COMPLEMENT METHOD, SUBTRACTION USING 2'S COMPLEMENT METHOD			
	3 rd	BINARY CODES(BCD CODE,XS-3 CODE,GRAY CODE)			
	4 th	LOGIC GATES(AND,OR,NOT,NAND,NOR,XOR,XNOR) AND TRUTH TABLE			
	5 th	UNIVERSAL GATE AND IMPLEMENTATION USING NAND AND NOR GATES			
	1 st	DEMORGANS THEOREM AND ITS PROOF			
	2 nd	BOOLEAN ALGEBRA, SIMPLIFICATION OF LOGIC EXPRESSION USING BOOLEAN ALGEBRA			
3 RD	3 rd	BOOLEAN EXPRESSION(SOP,POS)			
	4 th	2-VARIABLE,3-VARIABLE,4-VARIABLE K-MAP			
	5 th	SIMPLIFICATION OF SOP AND POS EXPRESSION USING K-MAP			
	1 st	DON'T CARE CONDITION			
	2 nd	2.COMBINATIONAL LOGIC CIRCUIT			
4 ^{тн}		CONCEPT OF COMBINATIONAL LOGIC CIRCUIT, HALF ADDER CIRCUIT, WORKING			
	3 rd	HALF ADDER USING NAND GATES ONLY AND NOR GATES ONLY,FULL ADDER WORKING,LOGIC DIAGRAM			
	4 th	REALIZE FULL ADDER USING TWO HALF-ADDERS AND AN OR-GATE WITH TRUTH TABLE,HALF SUBTRACTOR WORKING AND ITS LOGIC DIGRAM			

	5 th	FULL SUBSTRACTOR WORKING,LOGIC DIAGRAM
	1 st	REVISION
	2 nd	2:4 DECODER,3:8 DECODER WORKING,LOGIC DIAGRAM
	3 rd	4:2 ENCODER,OCTAL TO BINARY ENCODER WORKING,BINARY-DECIMAL ENCODER WORKING,LOGIC DIAGRAM
5 TH	4 th	MUX,4:1 MUX WORKING,LOGIC DIAGRAM
J	5 th	3.SEQUENTIAL LOGIC CIRCUIT
		DMUX,1:4 DMUX WORKING,LOGIC DIAGRAM
6 ^{тн}	1 st	1-BIT COMPARATOR AND 2-BIT COMPARATOR WORKING,TRUTH TABLE,LOGIC DIAGRAM
	2 nd	SLC,TYPES OF SLC, DIFFERENCE BETWEEN CLC AND SLC,CONCEPT OF CLOCK AND TRIGGERING
	3 rd	FLIP-FLOPS,NOR BASED SR-FF TRUTH TABLE AND WORKING
	4 th	NAND BASED SR-FF WORKING, CLOCKED NAND BASED SR-FF WORKING
	5 th	WORKING OF CLOCKED D-FF AND JK-FF
	1 st	RACE-AROUND CONDITION, WORKING OF MASTER-SLAVE JK-FF
	2 nd	WORKING OF T FLIP-FLOP, APPLICATIONS OF FLIP-FLOPS
7 [™]	3 rd	COUNTERS, TYPES OF COUNTERS, DIFFERENCE BETWEEN ASYNCHRONOUS AND SYNCHRONOUS COUNTER, MODULUS OF A COUNTER
	4 th	4-BIT ASYNCHRONOUS COUNTER,TIMING DIAGRAM
	5 th	REGISTERS AND ITS TYPES, WORKING OF SISO REGISTER
	1 st	WORKING OF SIPO AND PISO REGISTER
	2 nd	WORKING OF PIPO REGISTER
	3 rd	INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER
8 TH	4 th	PIN DIAGRAM AND DESCRIPTION OF 8085 MICROPROCESSOR
	5 th	PIN DESCRIPTION OF 8085 MICROPROCESSOR
9 ^{тн}	1 st	REVISION
	2 nd	BLOCK DIAGRAM/ARCHITECTURE OF 8085 MICROPROCESSOR
	3 rd	ARCHITECTURE OF 8085
	4 th	REGISTERS OF 8085,STACK,STACK POINTER,STACK TOP
	5 th	4.8085 MICROPROCESSOR
		OPCODES, OPERANDS, INSTRUCTION TYPES ACCORDING TO BYTE SIZE(1-BYTE,2- BYTE,3-BYTE INSTRUCTIONS WITH EXAMPLES
10 TH	1 st	INSTRUCTION SET TYPES ACCORDING TO OPERATION PERFORMED BY MICROPROCESSOR(DATA TRANSFER,ARITHMATIC,LOGICAL,BRANCH,STACK,MACHINE CONTROL,I/O CONTROL)
	2 nd	ADDRESSING MODES OF 8085 MICROPROCESSOR

	3 rd	INSTRUCTION CYCLE, FETCH CYCLE, EXECUTION CYCLE, MACHINE CYCLE AND T-STATE
	4 th	TIMING DIAGRAM OF OPCODE FETCH CYCLE, MEMORY READ AND MEMORY WRITE CYCLE
	5 th	TIMING DIAGRAM OF I/O READ,I/O WRITE,MOV, MVI INSTRUCTION
	1 st	COUNTER AND TIME DELAY
11 TH	2 nd	SIMPLE ASSEMBLY LANGUAGE PROGRAMMING OF 8085 MICROPROCESSOR
	3 rd	5.INTERFACING & SUPPORT CHIPS
		BASIC CONCEPT OF INTERFACING, MEMORY MAPPING AND I/O MAPPING
	4 th	8255PPI PIN DESCRIPTION
	5 th	8255PPI FUNCTIONAL BLOCK DIAGRAM
	1 st	MODES OF 8255
	2 nd	APPLICATION USING 8255 PPI-SEVEN SEGMENT LED DISPLAY
12 [™]	3 rd	SQUARE WAVE GENERATOR
	4 th	
		TRAFFIC LIGHT CONTROLLER
	5 th	REVISION

Chacke Amitar Tripatty

Aditya Nanayan Jena

SIGNATURE OF H.O.D

SIGNATURE OF LECTURER