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CENTRE OF GRAVITY 

The point, through which the whole weight of the body acts, irrespective of its position, is 

known as centre of gravity (briefly written as C.G.). It may be noted that everybody has one 

and only one centre of gravity. 

CENTROID 

The plane figures (like triangle, quadrilateral, circle etc.) have only areas, but no mass. The 

centre of area of such figures is known as centroid. The method of finding out the centroid of 

a figure is the same as that of finding out the centre of gravity of a body. 

CENTRE OF GRAVITY BY GEOMETRICAL CONSIDERATIONS: 

The centre of gravity of simple figures may be found out from the geometry of the figure as 

given below. 

1. The centre of gravity of uniform rod is at its middle point. 

2. The centre of gravity of a rectangle (or a parallelogram) is at the point, where its diagonals 

meet each other. It is also a middle point of the length as well as the breadth of the rectangle 

as shown in Fig. 
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AXIS OF REFERENCE 

CENTRE OF GRAVITY OF PLANE FIGURES 
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CENTRE OF GRAVITY OF SYMMETRICAL SECTIONS 
 

EXAMPLE 

Find the centre of gravity of a 100 mm × 150 mm × 30 mm T-section 

Solution. 

As the section is symmetrical about Y-Y axis, bisecting the web, therefore its centre of 

gravity will lie on this axis. Split up the section into two rectangles ABCH and DEFG as 

shown in Fig 
 

 

 

 

EXAMPLE 

Find the centre of gravity of a channel section 100 mm × 50 mm × 15 mm 

Solution. 

As the section is symmetrical about X-X axis, therefore its centre of gravity will lie on this 

axis. Now split up the whole section into three rectangles ABFJ, EGKJ and CDHK as shown 

in Fig. 
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EXAMPLE 

An I-section has the following dimensions in mm units : Bottom flange = 300 × 100 

Top flange = 150 × 50, Web = 300 × 50. Determine mathematically the position of 

centre of gravity of the section. 

Solution:- 
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MOMENT OF INERTIA 

The moment of a force (P) about a point, is the product of the force and perpendicular 

distance (x) between the point and the line of action of the force (i.e. P.x). This moment is 

also called first moment of force. If this moment is again multiplied by the perpendicular 

distance (x) between the point and the line of action of the force i.e. P.x (x) = Px2, then this 

quantity is called moment of the moment of a force or second moment of force or moment of 

inertia (briefly written as M.I.) 

MOMENT OF INERTIA OF A PLANE AREA 
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UNITS OF MOMENT OF INERTIA 

As a matter of fact the units of moment of inertia of a plane area depend upon the units of the 
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area and the length. e.g. 

1. If area is in m2 and the length is also in m, the moment of inertia is expressed in m4 

2. If area in mm2 and the length is also in mm, then moment of inertia is expressed in mm4 

MOMENT OF INERTIA BY INTEGRATION 
 

MOMENT OF INERTIA OF A RECTANGULAR SECTION: 
 

MOMENT OF INERTIA OF A HOLLOW RECTANGULAR SECTION: 
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THEOREM OF PERPENDICULAR AXIS: 
 

 

MOMENT OF INERTIA OF A CIRCULAR SECTION: 
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MOMENT OF INERTIA OF A HOLLOW CIRCULAR SECTION: 
 

THEOREM OF PARALLEL AXIS: 
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MOMENT OF INERTIA OF A TRIANGULAR SECTION: 
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MOMENT OF INERTIA OF A SEMICIRCULAR SECTION: 
 

MOMENT OF INERTIA OF A COMPOSITE SECTION 
 

 

 

 

EXAMPLE 

Find the moment of inertia of a rectangular section 30 mm wide and 40 mm deep about 
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X-X axis and Y-Y axis. 

Solution:- 

 

Given: Width of the section (b) = 30 mm and 

Depth of the section (d) = 40 mm. 

We know that moment of inertia of the section about an axis passing through its centre of 

gravity and parallel to X-X axis, 

 

 

 

EXAMPLE 

 

Find the moment of inertia of a hollow rectangular section about its centre of gravity if 

the external dimensions are breadth 60 mm, depth 80 mm and internal dimensions are 

breadth 30 mm and depth 40 mm respectively. 

 

EXAMPLE 
Find the moment of inertia of a circular section of 50 mm diameter about an axis 

passing through its centre. 

Solution. 

Given: Diameter (d) = 50 mm We know that moment of inertia of the circular section about 

an axis passing through its centre. 
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EXAMPLE 

Find the moment of inertia of a T-section with flange as 150 mm × 50 mm and web as 

150 mm × 50 mm about X-X and Y-Y axes through the centre of gravity of the section. 
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EXAMPLE 

An I-section is made up of three rectangles as shown in Fig. Find the moment of inertia 

of the section about the horizontal axis passing through the centre of gravity of the 

section. 

 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Simple Stresses and strains 

Stress: 

Stress of a material is defined as the resistance offered by the material per unit cross sectional area of the 

member subjected to external force. 

 

Mathematically, stress is expressed as 

 

Stress = 

 

 
 

 

 

Resistance 

Cross sectional area 

 

= 
R 

= 
F 

 

 

=  
Force 

C / S area 

A A 

 

Where, F = externally applied force, and 

A = Cross sectional area of the member 

Unit of stress in S.I system of units is N/mm2. 

Depending upon the nature of the force, stresses are of various types. Force acting on a structural member 

may be perpendicular to the plane or tangential to the plane. The force may tend to bend the plane about 

any of the axis on the plane or it may twist the plane about the axis perpendicular to the plane. 



 

 

 

 

Fig. Stress Types 



 

 

 

Strain: Strain is the measure of deformation produced in the structural member by the applied load. 

It is expressed as the ratio of change in dimension to the original dimension of the member before 

application of load. It is denoted by ‘ε’ (Greek small letter epsilon). Strain is a dimensionless quantity as 

it is the ratio of same units. 

 

 



 

 

 

The dimension may be length, area, volume or the change in angle. The nomenclature of the strain 

follows according to the dimension. 

Direct Stress: Direct stress also called simple stress is induced due to direct loading condition on the 

plane. It is of two types. 

a. Normal stress 

b. Tangential stress or shear stress 

 

Normal stress: Stress developed on a plane subjected to axial loading (load perpendicular to the plane) is 

called normal stress. Normal stress is of two types. 

a. Tensile stress 

b. Compressive stress 
 

 

 

 

Tensile stress: The stress induced on a plane of a body subjected to axial tensile load (two equal and 

opposite pulls) is known as tensile stress. 



 

 

 

When a body of uniform cross section e.g., a steel rod is subjected to an axial pull or tensile force, it has a 

tendency to elongate. The stress induced at any cross section of the rod is known as tensile stress. 

It is the resistance of the material l of the member per unit area of cross section normal to the load. 

 

Tenile stress = Resistance 
= 

Tensile Force 

Original cross sectional area C / S area 

 

 = 
R 

= 
F 

A0 A0 

 

 

Tensile strain: It is the ration of increase in length to the original length of the member subjected to axial 

tensile force. 

  = 
L 

L0 

 

Where, L0 = Original length of the member before being subjected to load 

L = Final length due to the applied load 

δL = L- L0 = increase in length 

Compressive stress: When a structural member is subjected to compressive force, it has a tendency to 

decrease in length. The stress induced in the member by virtue of the resistance offered by the material of 

the member is known as compressive stress. 

The stress induced in the material of the member by virtue of the resistance offered by it against decrease 

in length due to axial compressive load is known as compressive stress. 

l 



 

 

 

 

 

 

Comprssive stress =  

Original 

Resistance 

cross sectional area 
= 

Compressive Force 

C / S area 

 

 = 
R 

= 
F 

A0 A0 

 

Compressive strain: It is the ration of decrease in length to the original length of the member subjected 

to axial compressive force. 

Lateral strain: It is the ratio of change in lateral dimension to the original lateral dimension. 

Strain 

 
Lateral strain, = 

Change in lateral dimension 
= 

d 
= 

d − d0 
   

d Original lateral dimension d d 
0 

 

Strains in the direction transverse to the direction of load are called lateral strains. Lateral strains 

have a nature/sense opposite to that of the linear or primary strain. Lateral strains are also called 

transverse strains or secondary strains. 

Elongation: Increase in the dimension, length, breath or depth (height) of the structural member 

on account of externally applied load is known as elongation. 

Contraction: Decrease in the dimension of structural member on account of externally applied 

load is known as contraction. 



 

 

Poisson’s ratio: The ratio of lateral strain to the linear strain is known as Poisson’s ratio. It is 

denoted by ‘ν’ (Greek small letter Nu). Within elastic limit, in most material, this ratio remains 

fairly constant. 

Poisson' s ratio, = 
Lateral strain 

= 
 

d 

Linear strain  l 
 

 

 

The value of for most materials varies from 0.2 to 0.33. Poisson’s ratio for steel is 0.3 and that 

for concrete is 0.15. Poisson’s ratio cannot be 0.5 for any material. 

Let us consider a bar of length l, breath b and depth d subjected to axial tension of F along X- 

direction as shown in the figure. 

Let strains along X, Y and Z directions be  x , y and  z respectively. 

 

Mathematically, 

 y = −x 

 

 z = −x 

 

Negative sign indicates that the strain in the Y and Z directions are compressive, i.e., opposite to 

the strain in X direction. 



 

 

Volumetric strain: 

It is the ratio of change in volume to original volume of the body (structural member) subjected 

to loading. 

  = 
V 

v 
V 

 

 v = volumetric strain 

Where, V = original volume of the body 

V = Change in volume (increase or decrease) 

 

Volumetric strain is the sum of strains in three mutually perpendicular directions. 

Volumetric strain of a rectangular bar (cuboid): 
 

 

Let us consider a rectangular bar of length l, breadth b and depth d is subjected to axial tension 

P1, P2 and P3 along X, Y and Z directions respectively as shown in the figure. 

Let, δl = change in length 

δb = change in breadth 

δd = change in depth 

Original volume, V =lbd 

Final volume = (l + δl) (b + δb) (l + δd) 

= lbd + lb δd + ld δb + bd δl + l δb δd + b δl δd + d δl δb + δl δb δd 

= lbd + lb δd + ld δb + bd δl (neglecting product of small quantities) 



 

 

Change in volume, δV = Final volume – Initial volume 

= (lbd + lb δd + ld δb + bd δl) - lbd 

= lb δd + ld δb + bd δl 

Volumetric strain = 
Change in volume 

= 
V 

= 
lbd + ldb + bdl 

Original volume V lbd 

= 
l 

+ 
b 

+ 
d 

l b d 

=  x +  y +  z 

 

Volumetric strain of a cylindrical rod: 

Let us consider a cylindrical of length l and diameter d as shown in the figure subjected to axial 

pulls. Let the change in length and diameter is δl and δd respectively. 

 

Original volume = 
d 2l 
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Final volume = 
 

(d + d )2 (l + l ) = 
 (d 2l + d l + 2ldd ) 

4 4 

 

 

Ignoring products and higher powers of smaller quantities, 
 

 

Change in volume = V = 
 (d 2l + 2ldd ) 
4 

 

 

Volumetric strain =  = 
Change in volume 

= 
V 

  

v Original volume V 

 

= 
d 2l + 2ldd 

= 
l 

+ 
d 

d 2l l 
2 

d 

 v =  x +  y +  z 

Since, 

 

 y =  z = 
d 

d 

Volumetric strain = Strain of the length + Twice the strain of the diameter. 



 

 

 

 

 

 

 

 

 

 

 

In general, for any shape volumetric strain may be taken as the sum of the strains in three 

mutually perpendicular directions. 

Volumetric strain of a sphere: 

Let us consider a cylindrical of diameter d as shown in the figure. Let the change in length and 

diameter is δd. 

 

Original volume,V = 
d 3 
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Final volume = 
 

(d + d )3 

6 

= 
 (d 3 + 3d 2d ) 
4 

 

 

igoring thehigher powers of d 

 

 

Change in volume = V = 
 (3d 2d ) 
6 

Volumetric strain =  = 
Change in volume 

= 
V 

  

v Original volume V 

 

= 
3d 2d 

d 3 
= 

3d 

d 
= 3 d 

Volumetric strain = Three times the strain in the diameter. 

Shear Stress: Stress induced/developed on a plane subjected to tangential force (force parallel to the 

plane) is called shear stress. A material is said to be in a state of simple shear if it is subjected to only 

shearing stress. 



 

 

 

If two equal and opposite parallel force act on a body, then there is a tendency of one part of the body to 

slide over the other. The stress induced in the body is known as shear stress. Shear stress is tangential to 

the area over which it acts. 

A shearing stress alters only the shape of the body, leaving the volume unchanged. 

 

 

 

 

Let us consider a rectangular block of length l, width b and depth d is fixed to the surface at its 

bottom face as shown in the figure. 

F = Force applied tangentially along surface AB and is called shear force 

 

For equilibrium of the block the surface at CD will offer equal and opposite tangential reaction R 

= F. 

 

Let the block be consists of two parts 1 and 2 separated by a section XX. 

 

Consider the equilibrium of part 1. In order that the part 1 doesn’t move from left to right, the 

part 2 will offer a resistance along the section XX such that R = F. Similarly, for equilibrium of 

part 2, part 1 will offer a resistance R along the section XX such that R = F. 

The resistance R along the section XX is called shear resistance. 



 

 

 

Shear stress, = 
Shear resistance 

= 
R 

= 
F 

Shear area A A 

 

 = 
F 

l  b 

 

 

Shear deformation: 

When the block doesn’t fail in shear, it undergoes shear deformation as shown in figure (b). 

Since the bottom of the block is fixed, the block takes the shape of A’B’CD. The block 

undergoes distortion of ADA’ = ϕ. 

Let us think the block comprises of a number of thin horizontal layers. Each layer undergoes 

horizontal displacement in proportion to its distance from the lower face of the block. The ratio 



 

 

of the horizontal displacement of the layer to distance of the layer from the bottom face is known 

as shear strain. 

Shear strain = 
 l 

d 

tan  = 
 l 

d 

When  is very small,   tan = 
 l 

d 

 

Elastic Limit: The limit of stress within which a structural member of any material under stress 

regains its original shape and size after removal of loading is called elastic limit of the material. 

The maximum stress which the material can withstand without causing permanent 

deformation after the removal of load is called elastic limit. 

If the stress exceeds the elastic limit, the member will not regain its original configuration. A 

residual strain called permanent set remains in the member. 

Limit of proportionality: The limiting value of stress up to which stress is proportional to the 

strain is known as limit of proportionality. 

In case of steel, a well pronounced proportionality limit can be found from tensile test. Some 

materials have a very small value of proportionality limit, others may not show such limit. 

Hooke’s Law: In 1678, English Mathematician Robert Hooke observed that there is a definite 

relationship between the elastic deformation (measured as strain) and the stress intensity causing 

it. He offered his observation in the form of a law called Hooke’s law. 

Hooke’s law states that when a material is loaded up to certain limit of stress intensity within 

elastic limit, the stress is directly proportional the strain in the material. 

   

Mathematically,  
 

= E (Constant of proportion ality) 

 

 

Where,  is stress and ε is strain in the material of the member. The constant of proportionality, E 

is known as modulus of elasticity or elastic modulus. The elastic modulus for normal stress and 



 

 

strain is also called Young’s modulus. The modulus of elasticity is a measure of stiffness of the 

material. It has the same unit as stress. The slope of the stress-strain diagram in the linearly 

elastic region gives the value of modulus of elasticity (E). Modulus of elasticity of steel is equal 

to 210 GPa, aluminum is 73 GPa and plastic is from 1 to 1.4 GPa. (1 GPa = 1000 N/mm2) 

If P is the axial force acting in a prismatic member of sectional area A and length l, 
 

 

Strain, 
 l 

=    l =  l 
l 

  l = 
 l 

= 
Pl 

E AE 

 

The product AE is called the axial rigidity or axial stiffness of the member. 

 

For axial member, force necessary to produce one unit deformation (deflection) is known as 

axial stiffness and is denoted by K. Hence, AE 
L 

is the axial stiffness for axially loaded member 

of length L. Reciprocal of stiffness, 1
K 

is known as flexibility. More is the value of K, more is 

the stiffness and less is the flexibility and vice versa. 

 

Modulus of rigidity: The ratio of shearing stress to corresponding shear strain within elastic 

limit is a constant known as modulus of rigidity or shear modulus. It is denoted by letter G. It has 

same unit as shear stress. 

 

Modulus of rigidity, G = 
 

 

 
 = Shear stress 

Where, 
and  = Shear strain 

 

Bulk modulus: When a body is subjected to identical, σ (equal and like) stresses in three 

mutually perpendicular directions, it undergoes uniform changes in three directions without 

undergoing distortion of shape. In such case, the ratio of normal stress to volumetric strain is 

called Bulk modulus. It is denoted by letter K. 



 

 

 

 

 

Bulk modulus may be defined as the ratio of identical pressure acting in three mutually 

perpendicular directions to corresponding volumetric strain. 

The element in figure (a) is subjected to identical tensile stress in three mutually perpendicular 

directions and the element in figure (b) is subjected to identical compressive stresses. Hydrostatic 

pressure acting on a submerged body is an ideal example of identical stresses in three mutually 

perpendicular directions. 

 

Mathematically, K = 
  

 v 

 

Complimentary shear stress: 

A set of shear stresses acting across a plane is always accompanied by a balancing set of 

transverse shear stresses of same intensity across a plane normal to the previous plane. The 

balancing stress is called complimentary shear stress. 

Let us consider a rectangular block ABCD of unit thickness perpendicular to the plane of the 

paper subjected to a shearing stress, τ alongside AB and CD as displayed in the figure. The 

forces acting on these two faces are each equal to τ.(AB.1) = τ.(CD.1). These two equal, opposite 

and parallel forces will form an anti-clockwise couple of magnitude = τ x AB x AD. 



 

 

 

 

 

If the block is in equilibrium, a restoring (clockwise) couple of equal magnitude has to be 

developed by virtue of material resistance of the block. For this to happen, shear stress of 

intensity τ’ must be set upon the faces AD and BC. 

The forces acting on these faces are each equal to τ’.AD. These two equal, opposite and parallel 

forces will form a restoring couple (clockwise) of magnitude = τ’ x AD x AB. 

For, equilibrium equating the moment of two couples (acting and restoring), we have 

 

 .AD.AB =  .AB.AD 

   =  

 

  is called the compliment aryshear stress. 

 

Hence, a set of shear stresses is always accompanied by a complimentary set of shear stresses of 

equal intensity. 

 

 

 



 

 

As a result of the two couples formed due to applied shear forces and the shear forces arising due 

to complimentary shear stresses, the diagonal AC of the block will be subjected to tension while 

the diagonal BD will be subjected to compression. 

Diagonal tension and compression: 

Consider an elemental rectangular block ABCD with unit thickness perpendicular to the plane of 

the figure. Let the element be in the state of simple shear with shear stress intensity of τ across 

the surfaces as shown in the figure. 

Consider the plane through the diagonal BC which makes an angle of θ with face CD. Consider 

the equilibrium of triangular wedge BCD. The wedge is subjected to the following forces. 

a) Force along BC = τ.BC (↓) 

b) Force along DC = τ.DC (→) 

c) Force normal to the plane DB = σθ . BD 

d) Force tangential to the plane DB = τθ .BD 
 

 

 

Resolving the forces normal to the plane BD and along the plane BD, we have 

 (BD.1) =  (BC.1)cos +  (DC.1)sin  

 

  .BD =  .BD sin  cos +  .BD cos sin  . 

 

  =  .2 sin  cos =  sin 2 



 

 

 

 

 

 

 (BD.1) = − (BC.1)sin  +  (DC.1)cos 

 

Again,   .BD = − .BD sin  sin  +  .B cos cos 
 

 

  =  .(cos2  − sin 2  ) =  cos 2 

Hence, normal and tangential stresses on plane BD are 
 

 

and 

 =  sin 2 

 =  cos 2 

 

For plane of maximum normal stress, 

sin 2 = 1 

i.e.,2 = 900 i.e., = 450 

when = 450 ,  = + (+ vesign indicates that normal stress is tensile ) 

when = −450 , = − (− vesign indicates normal stress compressive) 
 

Corresponding to  = 450 , tangential stress  = 0 

Hence, the planes carrying maximum normal stress don’t carry any shear stress. 
 

For plane of maximum shear stress, 

cos 2 = 1 

i.e.,2 = 0 or1800 

 

 

 

i.e., = 0 or 900 



 

 

Planes corresponding to maximum shear stress, the normal stresses are zero. 

When an elemnt is in the state of simple shear, the maximum direct stresses are induced on 

mutually perpendicular planes which are at 450 to the planes of pure shear. One of the maximum 

direct stresses is tensile while the other is compressive. The direct maximum tensile and 

maximum compressive stresses are of the same magnitude as the shear stress on the planes of 

pure hear. 

Relationship between modulus of elasticity and modulus of rigidity: 

Consider a square block ABCD of side a and thickess unity perpendicular to the plane of the 

paper. Let the block be in the state of simple shear (pure shear) with shear stress intensity of τ 

across the surfaces as shown in the figure. The block will undergo distortion of shape due the 

system of stresses. 

It is evident from the stress components that the diagonal AC will be elongated and the diagonal 

BD will be shortened. 

The increase in length of the diagonal AC can be computed by considering the diagonal tensile 

and compressive stresses on AC and BD respectively. It is known that the diagonal tensile and 

compressive stresses in a square block are each equal to τ. 

Strain in the diagonal AC = Strain in AC due to diagonal tensile stress on the plane BD + Strain 

in length AC due to diagonal compressive stress on plane AC. 

Strain in AC = 
 

E 
+ 

 . 

E 
= 

 
(1 +  ) 

E 

 

(1) 
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1 

Strain in the diagonal AC can also be computeed from the distorted geometry of the block. 

Let the geometry ABCD deform to the position A1B1CD through the angle ϕ. 

Increase in length of the digonal AC = A1C – AC. 

 

Let AA2 be perpendicular to A1C. Since the amgle ACA2 is very small, AC = A2C 

 

Hence, icrease in length of the diagonal AC = A1C - A2C = A1A2 = AA1cos AA1A2. But the 

angle AA1A2 is equal to BAC = 450. 

Hence, increase in length of the diagonal AC 

 

= AA cos 450 = 

 

 

AA1 

 

 

Shear strain,  = 
AA1 = 
AD 

AA1 
 

a 

 AA1 = a 

 

Icrease in length of the diagonal AC = a . 

 

Length of the diagonal AC = a 
 

 

Strain of the diagonal AC = 
Increase in length 

Original length 
= 

a 
.  

1 
= 

 

2 

 

(2) 

 

From Equation (1) and (2), we have 

 
 

= 
 

(1 +  )  
   

= 
 

 

 

(1 +  ) 
2 E 2G E 

 

 E = 2G(1 +  ) (3) 

 

Relationship between Young’s modulus and bulk modulus: 

Consider a cube of side ‘a’ subjected to direct tensile stress of intensity σ in three mutually 

perpendicular directions. Let E be the Young’s modulus and ν, the Poisson’s ratio. 

Let us consider the strain in one edge AB of the cube. 

 

2 



 

 

Strain in AB due to tensile stress in the X-direction 
 

 

 

 

 

Strain in AB due to tensile 

Strain in AB due to tensile 

Strain in AB due to tensile 

 

stress in X - direction 

stress in Y - direction 

stress in Z - direction 

= 
 

E 

= − 
  

E 

= − 
  

E 

 
Total Strain in AB,  = 

 
− 

  
− 

  
= 

 
(1 − 2 ) 

x E E E E 

Similarly strains in the other two edges are each qual to  y 

 

=  z = 
 

(1 − 2 ) 
E 

 

Volumetric strain,  v 

 

=  x 

 

+  y 

 

+  z 
= 

3 
(1 − 2 ) 

E 

 
Bulk modulus, K = Normal stress 

= 
 

Volumetric 

 E = 3K (1 − 2 ) 

train 
 

 

3 
(1 − 2 ) 

E 

 

 

(4) 

 

 

The relationship between Young’s modulus and Bulk modulus is given by the above equation. 

Further from equation (3), we have 



 

 

 

G 
 

E = 2G(1 +  ) 

 2 = 
 

− 2 
G 

 

From equation (4), we have 

E = 3K (1 − 2 ) 

 E = 
  E  

3K 1 −  
G 

− 2 

 

 E = 

 

3K  3 − 
 

 

E  
= 

 

 

9KG − 3EK 

G 

 EG = 9KG − 3EK 

 E(3K + G) = 9KG 

 E = 
9KG 

 
 

3K + G 

 

The above equation is the relationship between three elastic modulii. 

 

For isotropic and homogeneous material, there are four elastic constants, namely E, G, K and ν. 

Out of the four constants two are independent constants and other two can be obtained by using 

the relationship between them. 

Deformation of prismatic bar due to uniaxial loading: 

 

Consider a prismatic bar subjected to uniaxial tensile load as shown in the figure. 

Let 

P = Load acting on the bar 

l = Original length of the bar 

A = Cross - sectional area of the bar 

 = Stress induced in the bar 

E = Young' s modulus of the material of the bar 

 = Strain in the ba 

l = Deformatio n or change in length of the bar 

 

We know that, 



 

 

 

 

 

 
 

Stress, = 
P 

; 
A 

Strain, = 
 

=  
P 

E AE 

and deformation,l =  .E = 
 .l 

= 
Pl 

E AE 

 

Deformation of prismatic bar under self weight: 

 

Consider a freely hanging prismatic bar AB of length L, cross sectional area A and weight W as 

displayed in the figure. Let ω = Specific weight of the material of the bar. 

 

 

Let us consider an elementary length, dx of the bar at a height of x from the bottom B of the bar. 

Weight of the portion of the bar below XX act as tensile force on the elemental length. Weight of 

the portion below XX, P = ωAx. 

Elongation of the elementary length dx due to the weight of the bar of length x 



 

 

E 

 (dx) = 
 P.dx 

= 
(Ax)dx 

AE AE 

= 
xdx 

E 

 

Total elongation of the bar due to self weight, 

 

L 

 ( ) 

L xdx  L 

 dx =  0 0 
=  xdx 

0 

  x 2  
L 

= 
E 

 
2 

 = 
L2 
2E 

  0 

 

 

 

 L = 

= 
(LA).L 

2 AE 

WL 
 

 

2 AE 

 

Tensile Test: 
 

 

 

E 



 

 

The tension test is the most common method for determining the mechanical properties of 

materials, such as strength, ductility, toughness, elastic modulus, and strain hardening capability. 

In a tension test, a specimen of standard dimension is subjected to a continually increasing 

uniaxial tensile force while simultaneous observation of elongation is taken by means of 

extensometer fitted to the specimen. The results of the test are plotted as stress-strain diagram. 

A standard tensile test set up with the representative (a) UTM (Universal Testing Machine) and 

(b) tensile test specimen is shown in the figure. 

 

A stress-strain diagram is a diagram in which corresponding values of stress and strain are 

plotted against each other. The values of the stress are plotted as ordinates in vertical (Y-axis) 

and values of strain as abscissas in horizontal axis (X-axis). 

 

 

 

 

Stress-strain curve for ductile material: 

 

A representative/typical stress-strain (σ-ε) diagram for ductile material (mild steel) is displayed 

in the figure with salient points on the curve. 

Stress is proportional to the strain up to the point A, i.e., the stress-strain variation is linear. This 

point represents limit of proportionality. Hooke’s law holds good up to this point. Slope of 

stress-strain line from O to A gives the modulus of elasticity also known as Young’s modulus. 



 

 

 

 

Beyond point A and up to point B, material remains elastic i.e., the material returns to its original 

condition of the forces acting on it is removed. The stress corresponding to represents the stress 

at elastic limit. If the specimen is stressed beyond point B, permanent set takes place and we 

enter plastic deformation region. In the plastic deformation region, the strain does not get fully 

removed even with the removal of the force causing it. 

If the force is increased further, point ‘C’ is reached where the test specimen elongates even 

when the stress is not increased. This point is called yield point. In fact, there are two yield 

points C and D which are called upper and lower yield points respectively. The stress 

corresponding to the yield point is known as yield stress or yield strength. 

With further straining, the effect of a phenomenon called strain hardening or work hardening 

takes place.* The material becomes stronger and harder and its load bearing capacity increases. 

The test specimen is therefore able to bear more stress. On progressively increasing the force 

acting on the specimen, point E is reached. This point is the highest point in the stress-strain 

curve and represents the point of maximum stress. It is, therefore, called ultimate tensile 

strength (UTS) of the material. It is equal to the maximum load applied divided by the original 

cross-sectional area (A0) of the test specimen. 



 

 

After UTS point E, a sharp reduction in cross-sectional area of the test specimen takes place and 

a “neck” is formed in the centre of the specimen. Ultimately the test specimen breaks in two 

pieces as the neck becomes thinner and thinner. The point F represents the breaking point and 

the corresponding stress is known as breaking stress or fractured stress. The actual breaking 

stress is much higher than the UTS, if the reduced cross-sectional area of the test specimen is 

taken into account. 

As plastic deformation increases, the cross-sectional area of the specimen decreases. However 

for calculation of the stress in the stress-strain graph, the original cross-sectional area is 

considered. It is for this reason that the breaking point, F seems to occur at a lower stress level 

than the UTS point E. 

The measure of the strength of a material is the ultimate tensile strength (σ at point E). However, 

from the design point of view, the yield point is more important as the designed structure should 

withstand forces without yielding. Usually yield stress (σ at point D) is two-thirds of the UTS 

and this is referred to as yield-strength of the material. 

Stress-strain curve for brittle material: 

 

 

A stress-strain curve for brittle material (cast iron) is obtained by subjecting a test bar of such 

material in a tensile testing machine. The tensile load is gradually increased and the extension of 



 

 

the test piece is recorded. The stress-strain curve for a brittle material is significantly different 

from that for a ductile material. A typical stress-strain curve for a brittle material is shown in Fig. 

This curve displays no yield point, and the test specimen breaks suddenly without any 

appreciable necking or extension. In the absence of a yield point, concept of “proof-stress” has 

been evolved for measuring yield strength of a brittle material. For example, 0.2% proof-stress 

indicates the stress at which the test specimen ‘suffers’ a permanent elongation equal to 0.2% of 

initial gauge length. 

Percentage of elongation: Increase in length of tensile test sample expressed in percentage of 

original length of the specimen is known as percentage of elongation or percentage of increase in 

length. It has considerable significance in engineering because it indicates the ductility of the 

material. 

The ability of material to deform appreciably without rupture is known as ductility. It is a 

measure of the amount of plastic deformation that a material goes through before it fails. It refers 

to plastic deformation under tensile loads. Ductility enables the material to be drawn into wires. 

Highly ductile metals can exhibit significant strain before fracturing, whereas brittle materials 

frequently display very little strain. Ductility increases with temperature. 

There are two common measures of ductility. 

The first is the total elongation of the specimen, given by 

Percentage elongation (%) = 
(l f − l0 ) 

x100 

l0 

where lf and l0 are the original and final length of the test specimen. 

The second measure of ductility is the reduction of area, given by 

 

 

Reduction of area (%) = 
( Af − A0 ) 

x100 

A0 

where, Af and A0 are, respectively, the original and final (fracture) cross-sectional area of the test 

specimen. 



 

 

Reduction of area and elongation are generally interrelated. Thus, the ductility of a piece of chalk 

is zero, because it does not stretch at all or reduce in cross section; by contrast, a ductile 

specimen, such as putty or chewing gum, stretches and necks considerably before it fails. 

Metals with more than 15% elongation at fracture are considered as ductile. Metals with 5 to 

15% elongation are considered of intermediate ductility. However, the metals with less than 5% 

elongation, i.e., strain of 0.05 are considered as brittle ones. Brittle materials include ceramic, 

glass and some alloys. Cast iron is also classified as brittle. 

Working stress: The maximum stress to which a structural member is ever allowed to subjected 

to is called working stress. It should be below the elastic limit. 

Ultimate stress: The maximum stress to which the material of the test piece is subjected to 

during the test is known as ultimate stress or ultimate strength. It is obtained by the maximum 

load to which the test piece is subjected to divided by the original cross-sectional area. 

Factor of safety: the ratio of the ultimate stress to the working stress is called the factor of 

safety. The value of factor of safety in engineering design varies from 3 (for accurately known 

dead load) to 12 (for shock loads of indefinite magnitude). 

Factor of safety = 
Ultimate stress 

Working stress 

 

In case of ductile material, since excessive deformation creates problem in the performance of 

the structural member, working stress is taken as a factor of yield stress or that of proof stress (if 

yield stress doesn’t exists) in place of ultimate stress. 

Factor of safety for steel is 1.85, for concrete it is 3. 

True stress: it is the ratio of the load to the actual cross-sectional area of the test piece. 

 

Engineering stress: It is the ratio of the load to the original cross-sectional area of the test piece. 

It is also known as nominal stress. 



 

 

Numerical Examples 

1. An elastic rod 25 mm diameter, 200 mm long extends by 0.25 mm under a tensile load of 40 

kN. Find the intensity of stress, strain and elastic modulus for the material of the rod. 

 

Solution. Given, Diameter of rod, d = 25 mm, Length, l = 200 mm 

Increase in length, δl = 0.25 mm,  Load, P = 40 kN = 40,000 N 

Area, A = 
 

d 2 = 
 

 252 = 490.87 mm2 

4 4 

Intensity of stress,  = 
Load 

= 
P 

= 
40000 N 

= 81.49 N / mm2 

Area A 490.87 mm2 

Strain,  = 
 l 

= 
0.25 

= 0.00125 

l 

Elastic modulus, 

200 

E = 
 

 

 

= 
81.49 

0.00125 

 

= 65,192 N / mm2 

2. A steel rod of 25 mm diameter and 2 m long is subjected to an axial pull of 45 kN. Find the 

(a) intensity of stress, (b) strain and (c) elongation. Take E = 2 x 105 N/mm2. 

 

Solution. Given, Diameter of rod, d = 25 mm, Length, l = 2 m = 2000 mm 

Load, P = 45 kN = 45,000 N 

E = 2 x 105 N/mm2 

Area, A = 
 

d 2 = 
 

 252 = 490.87 mm2 

4 4 

Intensity of stress,  = 
Load 

= 
P 

= 
45,000 N 

= 91.67 N / mm2 

Area A 490.87 mm2 

Strain,  = 
 

E 
= 

91.67 

2 105 
= 4.583 10−4 = 0.0004583 

Elongation =Strain  Original length =   l = 4.583 10−4  2000 

= 0.916 mm 

3. A load of 4000 N has to be raised at the end of a steel wire. If the unit stress in the wire must 

not exceed 80 N/mm2, what is the minimum diameter of the rod required? What will be the 

extension of 3.5 m length of the wire? Take E = 2 x 105 N/mm2. 

Solution.   Given,  Length, l = 3.5 m = 3500 mm,   Permissible stress = 80 N/mm2 



 

 

Load to be raised, P = 4000 N, E = 2 x 105 N/mm2 

Let the minimum required diameter of rod = d 

Cross - sectional Area, A = 
 

d 2 
4 

Stress in the wire,  = 
P 

= 
A 

4,000 
 

 

    
4 

 
  

For the wire to sustain the load,   Permissibl e stress 

 
4,000 

    
4 

 
 80 

  

 
 

d 2  
4000 

4 

 d  

40 

400 

 

 d  7.97 mm 

Elongation , l = 
 .l 

= 
80  3500 

= 1.44 mm 
  

E 2 105 

4. A wooden tie in the figure is 60 mm wide, 120 mm deep and 1.5 m long. It is subjected to an 

axial pull of 30 N. The stretch of the member is found to be 0.625 mm. Find the Young’s 

modulus of the material. 

 

 

 

 

Solution. Given, Length, l = 1.5 m = 1500 mm,  Width = 60 mm 

Depth = 120 mm, Pull, P = 30 N 

Increase in length, δl = 0.625 mm 

d 2 

d 2 



 

 

d = 

Area of cross − section = Width  Depth = 60 120 

= 7200 mm2 

Young' s modulus, E =  
PL 

A. l 
= 

30 1500 

7200  0.625 
= 10 N / mm2 

 

5. A hollow steel column of external diameter 250 mm has to support an axial load of 2000 kN. 

If the ultimate stress for the steel column is 480 N/mm2, find the internal diameter of the 

column allowing a load factor of 4. 

 

Solution. Given, External diameter, D = 250 mm, Axial load, P = 2000 kN 

  Ultimate stress, σu = 480 N/mm2, Load factor = 4 

Let the internal diameter of rod = d 
 

Load factor = 
Ultimate stress 

Safe stress 

 Safestress = 
480 

= 120 N / mm2 
4 

Safestress = 
P 

= 
A 

 

 

2000 1000 
 

 

 
 (2502 − d 2 ) 

4 
8 106 

 

 (250 

120 = 
 (2502 − d 2 ) 

2 
− 

2 ) 8 106 
 

120 

 2502 − d 2 = 21220.659 

 d 2 = 2502 − 21220.659 

 d 2 = 41279.341 

 d = 203.173 mm 

 

 

6. The following data refers to the tensile test conducted on a mild steel bar. 

i. Diameter of steel bar = 3 mm 

ii. Gauge length = 200 mm 

iii. Extension at a load of 100 kN = 0.139 mm 

iv. Load at elastic limit = 230 kN 



 

 

v. Maximum load = 360 kN 

vi. Total extension = 56 mm 

vii. Diameter of rod at failure = 22.25 mm 

 

Calculate (a) Young’s modulus, (b) the stress at elastic limit, (c) the percentage of elongation 

and (d) the percentage decrease in area 

Solution. Gauge length, lo = 200 mm,  Diameter of the bar, do = 30 mm 
 

a) Young’s modulus. 
 

 

 

d 2 
 

  302 
Cross - sectional area, A =  o  = 

4 
= 706.86 mm2 

4 

Stress at load (P = 100 kN), = 
P 

= 
100 1000 

= 141.47N / mm2 

A 706.86 

Strain at load (P = 100 kN),  = 
Extension 

Original length 
= 

0.139 
= 0.000695 

200 

Young' s modulus, 

 

b) Stress at elastic limit. 

E = 
 

 
=  

141.47 

0.000695 
= 2.035 105 N / mm2 

Load at elastic limit, Pe = 230 kN 

 

Stress at elastic limit, 

 

c) Percentage of elongation. 

  = 
P

e 

e 
A 

= 
230 1000 

= 325.383 N / mm2 
706.86 

 

Percentage of elongation 

 

d) Percentage decrease in area. 

= 
Total increase in length 

Gauge length 

 

100 = 
56 

 
 

200 

 

100 = 28% 

Diameter of rod at failure, df = 22.5 mm 

Decrease in area = 
 

(d 2 − d 2 ) = 
 (302 − 22.52 ) 

4 
0 f 

4 

= 309.250 mm2 

Percentage decreae in area = 
Decrease in area 

100 = 
309.25 

100 

Gauge area 

= 43.74% 

706.86 



 

 

7. A steel rod of 28 mm diameter and 300 mm long is subjected to axial forces alternating 

between a maximum compression of 16 kN and a maximum tension of 7 kN. Find the 

difference between the greatest and least lengths of the rod. Take E = 210 GPa. 

Solution.    Given: Diameter of rod, d = 28 mm; Length of the rod, l = 300 mm 

Axial compression, Pc = 16 kN = 16000 N 

Axial tension, Pt = 7 kN = 7000 N 

E = 210 GPa = 210 x 103 N/mm2 

Area of cross − section, A = 
 

d 2 = 
 

 282 = 615.75 mm2 

4 4 

a) When the rod is subjected to axial pull (tension) 

 

Increase in length,  l1 = 
Pt l 

AE 
= 

7000  300 

615.75  210 103 

 

= 0.016 (+) 

Greatest length aftere longation = 300 + 0.016 = 300.016 mm 

b) When the rod is subjected to axial push (compression) 
 

Increase in length,  l2 = 
Pc l 

AE 
= 

16000  300 

615.75  210 103 
= 0.037 (−) 

Least length aftere compressio n = 300 − 0.037 = 299.963 mm 

Difference between th e greatest and least length = 300.016 − 299.963 

= 0.053 mm 

8. A straight bar of brass having cross-sectional area of 500 mm2 is subjected to axial forces as 

shown in the figure. 

 

Find the total elongation of the bar. Take E = 80 GPa. 

Solution. Given: Cross-sectional area, A = 500 mm2, E = 80 GPa = 80 x 103 N/mm2 

For the sake of simplicity, the bar may be considered to be comprised of thee portions, AB, BC 

and CD. The elongation or contractions of each of the three portions are computed separately. 



 

 

Equilibrium of each portion of the bar is considered for computation of the elongation or 

contraction. 

 

 

 

 

 

 

 

Portion AB: AB is subjected to a tensile force of 100 kN 
 

 

Elongation of AB, AB = 
P1l1 

AE 
= 

100 1000  500 
= 1.25 mm(+) 

500  80 1000 

 

Portion BC: BC is subjected to a tensile force of 20 kN 
 

 

Elongation of BC, BC = 
P2l2 

AE 
= 

20 1000 1000 
= 0.5 mm(+) 

500  80 1000 

Portion BC: BC is subjected to a tensile force of 20 kN 
 

Contractio n of CD, CD = 
P3l3 

AE 
= 

30 1000 1200 
= 0.9 mm(−) 

500  80 1000 
 

Total elongation , =  AB +  BC +  CD = 1.25 + 0.5 − 0.9 = 0.85 mm 
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Complex stresses 

In real life, except for a few simple cases, the structural components and machine parts are not as 

simple, that they would be subjected only to one dimensional (uniaxial force) stress. Instead, 

components of machineries and structural elements of large and complex civil engineering 

structures are most likely to be subjected to complex three dimensional stress systems due to the 

system of forces acting on them. In such situations, the analysis and failure of the structural 

elements involve analysis of complex stresses. 

Even when subjected to uniaxial stress, instead of failure at the plane, normal to the force, the 

component may fail due to yielding at a different plane due to induced shear stress exceeding the 

permissible shear stress of the material of the member. 

Hence, it is not always the case that the plane normal or parallel to the force would experience 

the maximum stress. The element under direct tension or compression will experience shear 

stress and that under shear stress will experience normal stress albeit at different planes. 

To obtain a complete picture of the stresses in a bar, we must consider the stresses acting on an 

“inclined” (as opposed to a “normal”) section through the bar.  

 

 

Because the stresses are the same throughout the entire bar, the stresses on the sections are 

uniformly distributed. 
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Stresses in an oblique plane due to uniaxial normal stress: 

In the previous section, we were computing the stresses on a plane when the force was either 

normal to the plane or tangential to it. In other words, the plane of interest was either normal to 

the force or parallel to it. 
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P 

P 

 

 

In this section, the stresses on an oblique plane, i.e. plane making some angle (θ) with the 

vertical plane, will be dealt with. The normal stress on the vertical plane (perpendicular to the 

force) is  = P 
A 

, where P is the force and A is the area of cross-section of the plane. 

In figure (b), however, there are two components of the force, one normal to the oblique plane 

(Pn) and the other tangential to the plane (Pt). Hence, the oblique plane will experience two 

stresses, one normal stress (σn) and the other tangential stress or shear stress (τn). The stress 

components can be calculated by dividing the respective forces with the area of the oblique 

plane. 

Normal force perpendicular to the oblique plane, Pn = P cos 

 

Shear force tangential to the oblique plane, Pt = P sin  

 

Area of the oblique plane, Ao = 
A 

cos 
= Asec 

 

 

Normal stress, 

 

 = n 
Ao 

= 
 P cos 

Asec 
= 

 P cos.cos 

A 
 

=  cos2  (1) 
 

 

Tangential or shear stress, 

 

 = t 
Ao 

= 
 P sin  

Asec 
= 

 P sin  cos 

A 
 

= 
 

sin 2 
2 

 

(2) 

 

Thus, an oblique plane in a member under axial force will have two components of stresses on it, 

one normal to the plane while the other is tangential. 

The stresses on the inclined plane, therefore, are not simply the resolutions of σ, perpendicular 

and tangential to that plane. The direct stress, σθ has a maximum value of σ, when θ = 00 whilst 

the shear stress τ, has a maximum value of σ/2, when θ = 450. 
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Thus, a material whose yield stress in shear is less than half that in tension or compression will 

yield initially in shear under the action of direct tensile or compressive forces. 

Stresses in an oblique plane under pure shear stress system: 

Consider a rectangular stressed element shown in Fig. 4 to which shear stresses (τxy) have been 

applied on the vertical sides so as to produce counterclockwise rotation. Complementary shear 

stresses of equal magnitude (τyx) but of opposite sense are then set up on the horizontal sides in 

order to prevent rotation of the element and to keep it in equilibrium. 

 

 

 

 

Consider the equilibrium of the triangular prism element in Fig. 5. 

Resolving the forces along the direction normal to the plane AC, we have 

 .Asec =  xy Asin  +  yx A tan  cos 

 

 =  xy sin  cos +  yx sin  cos 
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xy 

xy yx 

 

= 2 xy sin  cos 

 

=  xy sin 2 

 

 

(3) 

 

The maximum value of σ is τxy when θ = 450. 

Resolving the forces along the plane AC, we have 

 .Asec +  yx A tan  sin  =  xy A cos 

 

 .sec =  xy cos −  yx tan  sin  
 

 =  cos2  −  sin 2  

=  (cos2  − sin 2  ) 
 

=  xy cos 2 

 

 

 

 

(4) 

 

The maximum value of τθ, is τxy when θ = 00 or 900 and it has a value of zero when θ = 450, i.e. 

on the planes of maximum direct stress. 

 

 

Further consideration of eqn. (3) shows that the system of pure shear stresses produces an 

equivalent direct stress system as shown in Fig., one set compressive and one tensile, each at 450 

to the original shear directions, and equal in magnitude to the applied shear. 

Stresses in an oblique plane under biaxial normal stress system: 

Consider the rectangular element as shown in Fig. 7 subjected to a system of two direct stresses, 

both tensile, at right angles, σx and σy. 

For equilibrium of the portion ABC, resolving the forces perpendicular to AC, 
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x y 

 

 
 

 

 

Consider the equilibrium of the triangular prism element in Fig. 8. 

Resolving the forces along the direction normal to the plane AC, we have 

 .Asec =  x A.cos +  y A tan  .sin  

 =  cos2  +  sin 2  

 

= 
 x (1+ cos 2 )+ 

 y (1− cos 2 ) 
2 

= 
 x +  y 

2 

2 

+ 
 x −  y 

cos 2 
2 

 

 

(5) 

 

Resolving the forces along the plane AC, we have 

 

 .Asec +  x Asin  =  y A tan  .cos 



 Page 7 

 

 

x y 

x ) 

x 
) 

 .sec = − x sin  +  y tan  .cos 

 

 = − x sin  cos +  y sin  .cos 

= −( −  )sin  cos 

( −  
= − 

2 

 
y sin 2 

 

(6) 

The maximum direct stress will equal σx or σy, whichever is the greater, when θ = 0 or 900. The 

maximum shear stress occurs in the plane when θ = 450. 

 

 

 max 

( −  
= − 

2 

 
y sin 2 

 

Stresses in an oblique plane under general two-dimensional stress system: 

Consider a rectangular prism of uniform cross-sectional area under bi-axial/ two-dimensional 

stress as shown in the Fig 9. 

 

 

Sign convention: 

 

1. Angle of obliquity is measured in counter-clockwise direction with respect to vertical 

plane; the reference plane is taken as positive. 

2. Tensile stress is taken as positive and compressive stress as negative. 

3. Shear stress on vertical reference plane producing anticlockwise rotation is taken as 

positive. 
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x y xy 

x y xy yx 

x y xy 

x yx y xy 

 

 

Consider the equilibrium of the triangular prism element in Fig. 10. 

Resolving the forces along the direction normal to the plane AC, we have 

 .Asec =  x A.cos +  xy Asin  +  y A tan  .sin  +  yx A tan  cos 

 

 =  cos2  +  sin 2  +  sin  cos +  sin  cos 

 

=  cos2  +  sin 2  + 2 sin  cos 
 

= 
 x (1+ cos 2 )+ 

 y (1− cos 2 )+  
  

sin 2 

2 

= 
 x +  y 

2 

2 

+ 
 x −  y 

cos 2 +  
2 

xy 

xy 
 

 

 

sin 2 

 

 

(7) 

 

Resolving the forces along the plane AC, we have 

 

 .Asec +  x Asin  +  yx A tan  sin  =  y A tan  .cos +  xy Acos 

 

 .sec = − x sin  −  yx tan  sin  +  y tan  .cos +  xy cos 

 

 = − sin  cos − sin 2  +  sin .cos +  cos2  

= −( −  )sin  cos +  (cos2  − sin 2  ) 
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x 
) ( −  

= − 
2 

 
y sin 2 +  

 

cos 2 
 

(8) 

The maximum and minimum normal stresses (σ1 and σ2) are known as the principal stresses. 

The maximum and minimum normal stresses (σ1 and σ2) which occur on any plane in the member 

can now be determined as follows: 

 

For σθ to be a maximum or minimum, 
d 

= 0 
d 

 

 

We have   = 
 x +  y 

 
2 

+ 
 x −  y 

cos 2 +  
2 

xy 

 

sin 2 

 

d 

d 
= −( 

 

−  y )sin 2 + 2 cos 2 = 0 

 

Since we are dealing with maximum and minimum normal stresses (principal stress), let us 

denote this angle as θp. The above equation can be written as, 

2 xy 

tan 2 p = ( −  y ) 
(9) 

 

There are two values of 2θp in the range 0-360°, with values differing by 180°. There are two 

values of θp in the range 0-180°, with values differing by 90°. So, the planes on which the 

maximum and minimum normal stresses act are mutually perpendicular and are known as 

principal planes. 

We can now solve for the principal stresses by substituting for θp in the normal stress equation 

for σθ. 

From triangle I and II of Fig. 11, 

 

sin 2 p =  

 

 

 

2 xy 
 

 

 

 

( −  ) 
cos 2 p =  

   
2 

x y  2 

xy 

   
2 

x y  2 

xy 

xy 

x xy 

x 

x y 
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2    
2 

x y 
 2 

xy 
   

2 

x y 
 2 

xy 

( −  
x y 

 2 
+ 4  2 

xy 

2    
2 

x y 
 2 

xy 
   

2 

x y 
 2 

xy 

xy 

 

x 

x 

 

 

Substituting the values of θp in (1), the maximum and minimum normal stresses are given by 
 

 

 1,2 

 

= 
 x 

 

+  y 

2 

( −  
 

) ( −  y ) 
 

 

  xy 

 

2 xy 

 
 

 

 1,2 

 

= 
 x +  y 

 
2 

( 
 

−  y )2 
+ 4 2 

 

 

 1,2 
= 

1 ( 
2 

x 

 

+  y ) (10) 

 

We have derived the maximum and minimum values of the normal stresses denoted as σ1 

(maximum) and σ2 (minimum). 

 

To find out which principal stress is associated with which principal angle, we could use the 

equations for sin θp and cos θp or for σθ. 

Similarly substituting the value of θp in eqn. (8), 
 

 

 

 
p 

( −  

= ∓ y 

 

2 xy 

 

 

  xy 

( −  y ) 

 

 = 0 
p 

Hence, the shear stresses are zero on the principal planes. 

1 

2 
   

2 

x y  2 

xy 

y x 

x 

) x 
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p 

x 
) 

x 
) 

x 

 

Now let us find out the maximum value of the shear stress. Differentiate eqn. (8) with respect to 

θ and equate it to zero. We get, 

 

 d 

d 

( −  
= − 

2 

 
y .2 cos 2 − 2 

 

sin 2 = 0 

 

 

 xy 

 

sin 2 
( −  

= − 
2 

 
y .cos 2 

Since we are dealing with shear, let us denote this angle as θs. The above equation can be written 

as, 

 
tan 2 

( −  
= − y 

 
(11) 

s 

xy 

There are two values of 2θs in the range 0-360°, with values differing by 180°. There are two 

values of θs in the range 0-180°, with values differing by 90°. So, the planes on which the 

maximum shear stresses act are mutually perpendicular. 

Because shear stresses on perpendicular planes have equal magnitudes, the maximum positive 

and negative shear stresses differ only in sign. 

Comparing the equation (4) for θs with that the equation (5) for θp, it is observed that both are 

reciprocal of each other. So we can write, 

tan 2 s = −  
1 

tan 2 p 
= − cot 2 p 

tan 2 s = tan(90 + 2 ) 
 

s = 45 +  p 

 

So, the planes of maximum shear stress (θs) occur at 45° to the principal planes (θp). We have 

therefore derived maximum & minimum values of principal stresses, their angles, maximum 

values of shear stress and its orientation with respect to principal planes. 

Further, from triangle I and II of Fig. 12, 

xy 

) 
2 
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2 

x y  2 

xy 

2 ( −  
x y  2 

+ 4  2 

xy 

xy 

x 

 

sin 2 p = ∓ 
( −  y ) 

 

 

cos 2 p =  
2 xy 

 

 

 

Substituting the values of θs in (2), the maximum and minimum shear stresses are given by 
 

 

 

 max 

( −  
=  

2 

) ( 
y  

. 
x 

 

−  y ) 
 

 

 

  xy 

 

 

2 xy 

 
 

 

 max 

 

 

 

 

 
max 

 

= . 

 

 

 

=  

( 
 

−  y )
2 
+ 4 2 

=  

 

In a structural member under biaxial complex stress system, there exist two mutually 

perpendicular planes on which the normal stress is either maximum or minimum. These planes 

are known as principal planes. The shear stress on these planes is zero. 

 

A little observation will show that,  =  
1 

( 
max 

2 
1 

 

−  2 ), where  and  2 are principal stresses. 

   
2 

x y  2 

xy 

   
2 

x y  2 

xy 

   
2 

x y  2 

xy 

1 

2 
   

2 

x y  2 

xy 

 

 
   

 

  
  

 

x 

x 

1 
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Further, it can be seen that the sum of the principal stresses is same as the sum of the normal 

stresses in any two mutually perpendicular directions. 

 1 +  2 =  x +  y 

 

Transformation of stress coordinates: 

There exists only one intrinsic/fundamental state of stress at a point in a stressed body akin to the 

position of a point on a plane. As the coordinates of a point (x, y) on a plane changes with the 

orientation of coordinate axes of reference, so does the stress coordinates (σ, τ) of a point in a 

stressed body (with respect to the plane of reference) with the orientation of its plane of 

consideration. 

 

 

‘A’ is a point on a plane with coordinates axes OX and OY as shown in Fig. 13. The coordinates 

of A is (x, y). If the orientation of axes of reference OX and OY is changed by an angle of θ in 

counterclockwise direction, then the position is not going to be changed. Instead its coordinates 

(x1, y1) in respect of changed coordinate axes will change. 

d = disance of A from the origin O of the plane 

 

 = angular distance of Afrom the origin O of the plane 

 

x = d cos, y = d sin  
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x1 = d cos( −  ), y1 = d sin ( −  ) 

 

It is evident that only the coordinates of the point and not its inherent position depends on the 

orientation of the axes of reference. Similarly, regardless of the orientation of the element used to 

portray the state of stress, the intrinsic state of stress remains the same. In other words the stress 

coordinates (σ, τ) and not the inherent state of stress of a point change. 

Member subjected to principal stresses: 

 

Mohr’s circle: 

 

Mohr’s circle is a graphical representation of stress transformation equations. The equations of 

stress transformation describe a circle if normal stress and shear stress are represented as abscissa 

and ordinate respectively. Each point on the circumference of Mohr’s circle represents a plane 

through the centre of the circle and the coordinates (σ, τ) of the point represents the normal stress 

(σ) and shear stress (τ) on the given plane. 

Mohr’s circle can be drawn from a given state of stress at a point in a structural member. 

Consider a stress element representing the state of stress at a point as shown in the Fig. 14. 

 

 

Stress transformation equations for normal and tangential components on a plane are given by 
 

 

Normal stress on the plane,  = 
 x +  y 

2 
+ 

 x −  y 
cos 2 +  

2 
xy 

 

sin 2 
 

(12) 

 

Shear stress on the plane, 

( 
 = − 

 

−  y 

2 

) 
sin 2 +  xy 

 

cos 2 
 

(13) 
x 
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 

 

  
x y  

−   
2 

2  
+  2 xy 

 

 

  x y 

2 

+  
 

 


2 

+  2 

xy 

2  

 
2 

x 

 

Rearranging the equation (12), we have 
 

  − 
 x +  y 

 
2 

= 
 x −  y 

cos 2 +  
2 

xy 

 

sin 2 
 

(14) 

 

Squaring both sides of equation (13) and (14) and adding them together, we have 

 


  − 

 
x +   2 

y  
  

+  =  
x −   2 

y  
 

+  2 
 

 

  
 

2  
 

 2  
xy 

 


 − 

 x +    2 
y  

  2 
+  2 = 

  

    
  

   

  

 

 

This is the equation of a circle with centre 
   +  
 

 2 

 
,0 

 

 

and radius 

 

R = and 

this circle is known as Mohr’s circle named after the German Civil Engineer Otto Mohr (1835- 

1918). It provides a simple and clear picture of an otherwise complicated analysis. 

Procedure for drawing Mohr’s circle: 

1. Draw coordinates axes in Cartesian coordinate system with O as origin, normal stress (σ) 

as abscissa (positive to the right) and shear stress (τ) as ordinate (positive downward). 

  x +  y  
2. Locate the centre C of the circle at the point having coordinates  

 

,0 . 
2  

3. Locate point A, representing the state of stress on the vertical plane, i.e., face x of the 

element by plotting its coordinates σx and τ. Point A on the circle corresponds to θ = 00 

and represents the vertical plane. 

4. Locate point B, representing the state of stress on the horizontal plane, i.e., face y of the 

element by plotting its coordinates σy and -τ. Point A on the circle corresponds to θ = 900 

and represents the horizontal plane. 

5. Join AB so as to intersect the normal stress axis at C. 

6. With the point C as the centre and CA (= CB) as radius, draw Mohr’s circle through 

points A and B. This is the required Mohr’s circle which has radius R. 

y 
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Every point on the circumference of the circle then represents a state of stress on some plane 

through C. 

The stress state on an inclined plane with an angle θ is represented at point D on the Mohr's 

circle, which is measured an angle 2θ counter- clockwise from point A to show the coordinate at 

D. 

Consider any point D on the circumference of the circle, such that CD makes an angle 2θ with 

CA, and drop a perpendicular from D to meet the σ axis at D’. 

 

Coordinates of D: 

 

OD' = OC + CD' = 
1 ( 
2 

x 

 

 

 

 

 

+  y 

 

 

)+ R cos(2 

 

 

− 2 ) 
p 
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p 

 

= 
1 ( 
2 

x 

 

+  y )+ R cos 2 cos 2 + R sin 2 p sin 2 

 

But R cos 2 p 
= 

1 ( 
2 

x 

 

−  y ) and R sin 2 p 

 

=  xy 

 

 

Therefore, OD' = 
1 ( 
2 

x 

 

+  y 
)+ 

1 ( 
2 

x 

 

−  y )cos 2 +  sin 2 

 

On inspection this is seen to be eqn. (12) for the normal stress  on the plane inclined at θ to 

the vertical plane AB. 

Similarly, DD' = R sin (2 − 2 ) 
 

DD' = R sin 2 p cos 2 − R cos 2 p sin 2 

 

DD' = − 
1 ( 
2 

x 

 

−  y )sin 2 +  cos 2 

 

Again, on inspection this is seen to be eqn. (13) for the shear stress   on the plane inclined at θ 

to the vertical plane AB. 

 

Thus the coordinates of Q are the normal and shear stresses on a plane inclined at θ to AB in the 

original stress system. 

Characteristics of Mohr’s circle 

 

1. The direct stress is maximum when D is at P1, i.e. OP1 is the length representing the 

maximum principal stress σ1 and 2θp gives the angle of the plane θp, from AB. Similarly, 

OP2 is the other principal stress. 

2. The maximum shear stress is given by the highest point on the circle and is represented 

by the radius of the circle. This follows since shear stresses and complementary shear 

stresses have the same value; therefore the centre of the circle will always lie on the σ- 

axis midway between σx and σy. 

p 

xy 

xy 



 Page 18 

 

 

 

3. From the above point the direct stress on the plane of maximum shear must be midway 

 
between σx and σy, i.e. 

1 ( +  ). 
 

2 
x y 

4. The shear stress on the principal planes is zero. 

5. Since the resultant of two stresses at 900 can be found from the parallelogram of vectors 

as the diagonal, as shown in Fig. 13.10, the resultant stress on the plane at θ to AB is 

given by OD on Mohr’s circle. 

6. Comparing the Mohr's circle and the stress element, it is observed points S1 and S2 

representing the points of maximum and minimum shear stresses, are located on the 

circle at 900 from points P1 and P2 i.e. the planes of maximum and minimum shear stress 

are at 450 to the principal planes, and 

The graphical method of solution of complex stress problems using Mohr’s circle is a very 

powerful technique since all the information relating to any plane within the stressed element is 

contained in the single construction. It thus provides a convenient and rapid means of solution 

which is less prone to arithmetical errors and is highly recommended. 
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t 

c 

 

Numerical 

 

1. A material has permissible stresses in tension, compression and shear as 30 N/mm2, 90 

N/mm2 and 25 N/mm2 respectively. If specimens of diameter 20 mm are tested in tension and 

compression, identify the failure surfaces and failure load. 

Solution: 

 

Case I (Test in tension): If subjected to full tensile strength, 

Maximum tensile stress,  = 30 N / mm2 

 

Corresponding maximum stress in shear,  

 

 

 

max 

 

= 
 t 

2 
= 

30 
= 15 N / mm2  25 N / mm2 

2 

Hence, the failure will occur due to tension. The maximum tensile stress is in the axial direction. 

Hence failure will occur on the plane of axial tensile stress, i.e., at right angle to the stress. 

Corresponding tensile force, Pt = Area of specimen  tensile strength 
 

= A   t 
= 

 
 202  30 

4 

= 9224.778 N 

Case II (Test in compression): 

Maximum compressive stress,   = 90 N / mm2 

 

Corresponding maximum stress in shear, 

 

 

 

max 

 

= 
 c 

2 
= 

90 
= 45 N / mm2  25 N / mm2 

2 

 

Hence, the failure will occur due to shear. The failure will occur on the plane at 45 to the plane 

of axial stress. 

Corresponding compressive stress causing shear failure,  cf = 2  25 = 50 N / mm2 

 

Corresponding compressive force, Pc = Area of specimen  compressiv estress 
 

= A   cf 
= 

 
 202  50 

4 

= 15707.93 N 
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2. Normal stresses acting at a point in a strained material are 100 N/mm2 compressive and 60 

N/mm2 tensile as shown in the figure. Find the stresses on the given oblique plane. 

 

 

Solution: Sign convention: 

 

Define the stresses in terms of the sign convention: 

 

 x = −100 MPa,  y = 60 MPa 

Angle of orientation of plane of plane AC, θ = - 650 

(clockwise) 

 

 

 

Normal stress on the oblique plane,  = 
 x +  y 

2 
+ 

 x −  y 
cos 2 

2 

= 
− 100 + 60 

+ 
− 100 − 60 

cos 2(− 650 ) 
2 2 

= −20 − 80cos(− 1300 ) 
 

= 31.423 N / mm2 (tensile ) 

 

Shear stress on the oblique plane, 

( 
 = − 

 

−  y 

2 

) 
sin 2 

x 
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 +    

  

= − 
(− 100 − 60) 

sin 2(− 650 ) 
2 

= 80sin (− 1300 ) 
 

= −61.284 N / mm2 (Clockwise ) 

 

Resultant stress on the plane,  R = = 
 

= 68.87 N / mm2 

 
−1   

 

 
−1 31.423  

Angle of obliquity,  = tan   
 

 = tan 
 

61.284 
 

      

= 27.140 

3. The state of plane stress at a point is represented by the stress element below. Determine the 

stresses acting on plane oriented 30° clockwise with respect to the vertical plane. 

 

 

 

Solution: Sign convention: 
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x 
) 

 

Define the stresses in terms of the sign convention: 
 

 x = −80 MPa,  y = 50 MPa and  xy = −25 MPa 

Angle of orientation of plane, θ = - 300 
 

 

 

Normal stress on the given plane,  = 
 x +  y 

2 

+ 
 x −  y 

cos 2 +  
2 

xy 

 

sin 2 

= 
− 80 + 50 

+ 
− 80 − 50 

cos 2(− 30) + (− 25)sin 2(− 30) 
2 2 

 

= 
− 30 

+ 
− 130 

cos(− 60) − 25sin (− 60) 
2 2 

= −15 − 65cos(− 60) − 25sin (− 60) 

= −15 − 65cos(− 60) − 25sin (− 60) 
 

= −25.9 MPa (Compressio n) 

 

 

 

 
Shear stress on the oblique plane,  

( −  
= − 

 
y sin 2 +  

 
cos 2 

 
 

 
2 

xy 

= − 
(− 80 − 50) 

sin 2(− 300 )+ (− 25)cos 2(− 300 ) 
2 

= 65  sin (− 600 )− 25cos(− 600 ) 
 

= −68.80 MPa (Clockwise ) 
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4. Example: The state of plane stress at a point is represented by the stress element below. 

Determine the principal stresses and draw the corresponding stress element. 

 

 

 

Solution: 

Sign convention: 
 

Define the stresses in terms of the sign convention: 
 

 x = −80 MPa,  y = 50 MPa and  xy = −25 MPa 

Angle of orientation of plane, θ = - 300 

 

Principal stresses,  

 

 

1,2 
= 

1 ( 
2 

x +  y ) 

 

= 
1 

(− 80 + 50)  
2 

 

= −15  

1 

2 
   2 

x y  2 

xy 

1 

2 
(− 80 − 50)2 

+ 4(− 25)2 

1 

2 
(− 130)2 

+ 4  625 
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) ( ) 

p 

p 

2 p 

1 p1 

= −15  69.64 

1 = 54.64 MPa and  2 = −84.64 MPa 
 

 

Angle of principal plane, 

 

tan 2 p = ( 

2 xy 

x −  y 
= 

2(− 25) 
− 80 − 50 

 

tan 2 p = 0.3846 

 

2 = 21.00 and 21.00 + 1800 

 

 = 10.50 and 100.50 

 

Check for which angle goes with which principal stress. Put θ = 10.50 in the stress equation, 
 

  = 
 x +  y 

 
2 

+ 
 x −  y 

cos 2 +  
2 

xy 

 

sin 2 

 

= 
− 80 + 50 

+ 
− 80 − 50 

cos 2(10.50 )+ (− 25)sin 2(10.50 ) 
2 2 

= −84.6 MPa 

 

 = 54.64 MPa with = 100.50 

 = −84.64 MPa with = 10.50 
 

 

 

5. A point in a stressed structural member is subjected to a tensile stress of 90 N/mm2 on a 

horizontal plane and compressive stress of 50 N/mm2 on the vertical plane. There is a shear 
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s 

s 

 

stress of 45 N/mm2 such that when on vertical plane, it tends to rotate the member in 

counterclockwise direction. Determine the maximum shear stress and also the resultant stress 

on the planes of maximum shear stresses. 

Solution: 
 

 

 

 

Define the stresses in terms of the sign convention: 
 

 x = −50 MPa,  y = 90 MPa and  xy = 45 MPa 

 

Angle of orientation of plane, θ = - 300 

 

Maximum shear stress,   

max = 

 

 

= 

 

 

 

= 73.53 N / mm2 (counterclockwise) 

 

Inclination of plane of maximum shear to the vertical plane, 

( x −  y ) (− 50 − 90) 
tan 2s = −  

2 xy 
= − 

2  45 
 

tan 2 s = −1.555 

2 = tan −1 (1.555) = 57.260 

 

 

and 

 

 

237.260 
 

  = 28.630 and 118.630 (counterclockwise) 

 

Normal stress on plane of maximum shear stress, 

 

 
   

 

  
  

 

 

 
(− 50 − 90)2 

+ 452 
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 +    

  

x 
) 

 = 
− 50 + 90 

+ 
− 50 − 90 

cos 2(28.630 )+ 45sin 2(28.630 ) 
  

n 2 2 

= 20 N / mm2 
 

 

 

 

 

Resultant stress on the plane,  R = = 

 

= 76.20 N / mm2 
 

−1  n  −1 20   
 = tan   

 
 = tan   

76.20 
 

 max    

= 14.700 

 

Summary 

1. The normal stress σ and shear stress τ on oblique planes resulting from direct loading are 

 =  cos2  

 

 = 
 

sin 2 
 

2 
 

2. The stresses on oblique planes owing to a complex stress system are: 
 

 

Normal stress,  = 
 x +  y 

2 

+ 
 x −  y 

cos 2 +  
2 

xy 

 

sin 2 

 
Normal stress,  

( −  
= − 

 
y sin 2 +  

 
cos 2 

 
 

 
2 

xy 

202 + 73.532 
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3. The principal stresses (i.e. the maximum and minimum direct stresses) are then 
 

 

 1,2 
= 

1 ( 
2 

x +  y ) 

 

and these occur on planes at an angle θp to the vertical plane on which σx, acts, given by 

either 

 

tan 2 p = ( 

 

2 xy 

x −  y 

 

where σp = σ1 or σ1, the planes being termed principal planes. The principal planes are always at 

900 to each other, and the planes of maximum shear are then located at 450 to them. 

 

4. The maximum shear stress is 

 

 
max 

 

 

 

 

 

 

=  

 

=  
1 

( 

 

 

 

 

 
−  ) 

max 
2 

1 2 

5. Normal stress on plane of maximum shear = 
1 (  +  ) 

 

2 
x y 

6. Shear stress on plane of maximum direct stress (principal plane) = 0 

7. In problems where the principal stress in the third dimension σ3 either is known or can be 

assumed to be zero, the true maximum shear stress is then 

1 
(greatestprincipal stress − least principal stress) 
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x y  2 

xy 
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Bending Stress 

 
When a beam is loaded with external loads, all the sections of the beam will experience bending 

moments and shear forces. The shear forces and bending moments at various sections of the 

beam can be evaluated as discussed in the earlier chapter. In this chapter, the bending and 

bending stress distribution across a section will be dealt with. 

Some practical applications of bending stress shall also be dealt with. These are 

 

1. Moment carrying capacity of a section 

2. Evaluation of extreme normal stresses due to bending 

3. Design of beam for bending 

4. Evaluation of load bearing capacity of the beam 

 

The major stresses induced due to bending are normal stresses of tension and compression. But 

the state of stress within the beam includes shear stresses due to the shear force in addition to the 

major normal stresses due to bending although the former are generally of smaller order when 

compared to the latter. 

 

 

Simple Bending or Pure Bending 

 

A beam or a part of it is said to be in a state of pure bending when it bends under the action of 

uniform/constant bending moment, without any shear force. 

Alternatively, a portion of a beam is said to be in a state of simple bending or pure bending when 

the shear force over that portion is zero. In that case there is no chance of shear stress in the 

beam. But, the stress that will propagate in the beam as a result will be known as normal stress. 



 

 

However, in practice, when a beam is subjected to transverse loads, the bending moment at a 

section is accompanied by shear force. But, it is generally observed that the shear force is zero 

where the bending moment is maximum. Therefore, the condition of pure bending or simple 

bending is deemed to be satisfied at that section. 

Examples of pure bending are – 

 

1. Bending of simple supported beam due to end coupling (Uniform pure bending) 

2. Bending of cantilever beam with end moment (Uniform pure bending) 

3. Bending of the portion between two equal point loads in a simple supported beam with 

two-point loading (Non-uniform pure bending) 

The four point bending of the simply supported beam 

 

 

 



 

 

 

 

 

Theory of Simple Bending 

The theory which deals with the determination of stresses at a section of a beam due to pure 

bending is called theory of simple bending. In this chapter, bending of straight homogeneous 

beams of uniform cross sectional area with vertical axis of symmetry shall be considered. The 

application of this theory can be extended to beams with two or more different materials as well 

as curved beams. 

Several cross-sections of beams satisfying the above conditions are shown in the Fig. 5. 

 

A beam of rectangular cross-section with typical loading condition is shown in the Fig. 6. Also 

shown in the Fig. 7 is the three-dimensional beam with longitudinal vertical plane of symmetry, 

with the cross-section symmetric about this plane. It is assumed that the loading and supports are 



 

 

also symmetric about this plane. With these conditions, the beam has no tendency to twist and 

will undergo bending only. 

 

 

A beam subjected to sagging moment is shown in the Fig. 8. The beam is imagined to be 

consisting of a number of longitudinal fibres; one such fibre is is shown in colour. It is obvious 

that the fibres near the upper side of the beam are compressed; hence an element in the upper 

part is under compression. The fibres at the bottom side of the beam get stretched and, hence, the 

elements on the lower side are subjected to tension. Somewhere in between, there will be a plane 

where the fibres are subjected to neither tension nor compression. Such a plane is termed as 

neutral surface or neutral plane. 

In the conventional coordinate system attached to the beam in Fig. 8, x axis is the longitudinal 

axis of the beam, the y axis is in the transverse direction and the longitudinal plane of symmetry 

is in the x- y plane, also called the plane of bending. 

Neutral Surface 

The longitudinal surface of a beam under bending which experiences neither tension nor 

compression is known as neutral surface. There is only one neutral surface in a beam. 



 

 

Neutral Axis 

The line of intersection of transverse section of beam with the neutral surface is known as neutral 

axis. In other words, the line of intersection of the longitudinal plane of symmetry and the neutral 

surface is known as neutral axis. Neutral axis experiences no extension or contraction. 

 

 

 

 

 



 

 

 

 

Axis of beam 

The intersection of the longitudinal plane of symmetry and the neutral surface is called the axis 

of the beam. In other words, the line through the centroid of all the cross-sections of the beam is 

known as axis of the beam. 

Assumptions for theory of pure bending: 

The assumptions made in the theory of simple bending are as follows: 

 

1. The material of the beam is perfectly homogeneous (i.e. of the same kind throughout) and 

isotropic (i.e. of same elastic properties in all directions). 

2. The material is stressed within elastic limit and obeys Hooke's law. 

3. The value of modulus of elasticity for the material is same in tension and compression. 

4. The beam is subjected to pure bending and therefore bends in the form of an arc of a 

circle. 

5. The transverse sections, which are plane and normal to the longitudinal axis before 

bending, remain plane and normal to the longitudinal axis of the beam after bending. 

6. The radius of curvature of the bent axis of the beam is large compared to the dimensions 

of the section of beam. 

7. Each layer of the beam is free to expand or contract independently. 

8. The cross-sectional area is symmetric about an axis perpendicular to the neutral axis. 

 

Explanation of the assumptions 



 

 

According to assumption No. 5, plane section ABCD before bending as shown in Fig. 10 remains 

plane after bending as shown by A’B’C’D’. This assumption, also known as Bernoulli’s 

assumption, is perfectly valid for beams with pure bending. If there is any shear along with the 

bending, the shear deformation distorts the plane and A’B’ will not remain plane. However, for 

beams with smaller depth (d<1/10th span) shear deformation is small and this assumption is not 

much affected. In case of deep beams, with shear forces, this assumption fails. 

Assumption No. 6, the radius of curvature is large compared to depth is valid if deflections are 

less than 1/10th to 1/5th of depth of beam. Therefore, the theory derived with this assumption 

may be called small deflection theory. 

 

 

Relationship between Bending Stress and Radius of Curvature 

Consider a part of beam ABCD of length dx subjected to pure bending of bending moment M as 

shown in the Fig. 11. As the beam is subjected to pure bending, it bends into a circular arc. 

The topmost layer AB is contracted to A’B’. The layer PQ below it is compressed to a lesser 

degree than it. The bottom most layer CD is elongated to C’D’. All other layers are subjected to 

different degrees of elongation or contraction degrees depending upon their position. However, 

one layer MN has not suffered any change in its length. This layer is called the neutral layer or 

neutral surface. 

Let dθ be the angle formed by the planes A’C’ and B’D’ and R be the radius of the neutral layer. 

Consider a fibre PQ at a distance of y from the neutral layer. 

Original length of the fibre, PQ = dx = Rdθ 

After deformation, the length of the fibre is compressed to P’Q’. 



 

 

 

 
 

Decrease in length of the fibre PQ = PQ − PQ 

= Rd − (R − y)d 

= y d 

Let the projection of C’ A’ and D’ B’ meet at O. 

 
Strain in the fibre PQ,  = 

Decrease in length 

Original length 

 

  = 

 

Let σ be the stress in the fibre PQ. 

y d 
= 

y 

R d R 

 

Then,  = 
 

E 

 

, where E is the Modulus of elasticity of the material. 

  = 
 

= 
y 

E R 

  = 
E 

 y 
R 



 

 

 

Hence, the stress intensity in any fibre is proportional to the distance of the fibre from the neutral 

layer. 

Position of Neutral Axis 

Consider a beam of arbitrary cross-section as shown in the Fig. 12. Consider an elemental are δa 

at a distance y from the neutral axis. Let the bending stress on the element be σ. 

 

 

Force on the elemental area =  a 

Force over the entire cross-section of the beam =  a 

We also know,  = 
E 

 y 
R 

Substituting the value of σ, we get 

Force over the entire cross-section of the beam =  
 E 

ya = 
 E 

 ya 

R R 

Since there is no axial force on the beam, from equilibrium consideration, the above axial force 

should be zero. 

Hence, 

 

Since, 

E 
ya = 0 

R 

E 
is constant for a given section, we have 

R 

 

 

 yδa = 0 

We know, A y =  yδa 

Where, A is the area of cross-section of the beam. 

So, A y = 0 



 

 

 
R 

 

 

 

or y = 0 

 

y is the distance of the centroid from the neutral axis. Hence, the neutral axis of the section 

coincides with the centroid of the section. Thus, to locate the neutral axis of a section, the 

centroid of the section should be determined. The line passing through the centroid, parallel to 

the plane of bending is the neutral axis of the beam section. 

 

Relationship between Moment and Radius of Curvature 

 

Consider an elemental area δa from the neutral axis of a beam section as shown in the Fig. 13. 

The stress on the elemental area,  = 
E 

y 
R 

Force on the elemental are  δa = 
E 

y δa 
R 

Moment of resistance offered by this elemental area about the neutral axis 

= 
 E 

 

 
y δa  y = 

 

E 
y 2δa 

R 

Total moment of resistance, M offered by the cross-sectional area of beam, 

M = 
 E 

y 2δa 
R 

M = 
 E 

y 2δa 
R 

But,  y 2δa is the moment of inertia I of the beam section about the neutral axis. 

 M = 
E 

I 
R 

M 
= 

E 

I R 

 

We have earlier seen that, 
 

= 
E 

y R 

Combining the two equations, we get 

M 
= 

 

I y 
= 

E 
, which is known as the bending equation. 

R 



 

 

 

 

Where, M = bending moment at a section, 

I = moment of inertia of the beam section, 

σ = stress at any layer of the beam, 

y = distance of the layer from the neutral axis, 

E = Young’s Modulus and 

R = radius of curvature. 

M and I are constants for a particular beam section. Hence, σ varies proportionally to the distance 

y. So, maximum stress occurs at extreme fibres. The stress distribution will be triangular as 

shown in the Fig. 13. 

 

 

The formula for flexural stress derived as above applies only to cases where the material behaves 

elastically. The important concepts used in deriving the flexural formula may be summed up as 

follows. 



 

 

1. Strains in different layers of beam vary linearly with their distances from the neutral axis. 

2. Properties of materials are used to relate strain and stress. 

3. Equilibrium conditions are used to locate the neutral axis and to determine the internal 

stresses. 

The internal bending moment developed by the induced flexural stresses due to bending at a 

section is known as moment of resistance of the section. For equilibrium of the section, the 

moment of resistance of a section should be equal to or greater than the applied external moment. 

 

Flexural rigidity: 

From equation of flexure, we have 

 

 

 

 
M 

= 
E 

I R 

 

EI = MR 

EI is known as flexural rigidity. Flexural rigidity is the measure of flexural strength of a beam 

section. Higher is the flexural rigidity better is the flexural strength. It depends upon the material 

as well as the geometric property of the section. Elastic modulus, E reflects the material 

character and moment of inertia, I reflects the geometric characteristic 

Economical section 

 

In a beam of rectangular or circular section, the fibres near neutral axis are under-stressed 

compared to those at the top and bottom. As a result, a large portion of the beam cross-section 

remains under-stressed and under utilized for resisting flexure or bending. 

 



 

 

 

 

The expression M = 
 

y 

 

I indicates that moment of resistance of a section can be greatly 

increased by increasing the moment of inertia by rearranging or redistributing the area while 

keeping the cross-sectional area and the depth of the beam unchanged. This can be achieved by 

changing the geometry of the section so as to spread the area farther from the neutral axis. 

In order to increase the moment of resistance to bending of a beam section, it is advisable to use 

sections which have large area away from the neutral axis. Hence, I-section and T-sections are 

preferable to rectangular section. 

Sections of different geometry, (i) rectangular section and (ii) I-section of equal cross-sectional 

area and same depth are shown in the Fig. 15. 

Moment carrying capacity of a section: 

From equation of flexure, we have 

 

 
= 

M 

y I 

 

 = 
M 

y 
I 

It is obvious that bending stress is maximum on the extreme fibre at the top and bottom of the 

beam where y is maximum. In design of beam, the extreme fibre stress should not be allowed to 

exceed the allowable or permissible stress of the material. If 

bending, then for safe design 

 allow is the allowable stress for 

 max 

 

M 

I 
y

max 

  allow 

 

 

  
allow 

If M is taken as the maximum moment carrying capacity of the section, 
 

M 

I  
ymax 

 

  allow 



 

 

y ) 

 

M   
I 

ymax 

 

 allow 

 

The moment of inertia I and the extreme fibre distance ymax are the geometrical properties of the 

section. The ration of the moment of inertia and the extreme fibre distance (I for a given 
max 

cross-section of beam is constant and is known as section modulus (Z). Thus the moment 

carrying capacity of a beam is given by 

M =  allowZ 

 

If  allow in tension and compression are same, doubly symmetric section is selected. Doubly 

symmetric section means a section which is symmetric about the vertical as well as neutral axis. 

If  allow in tension and compression are different, un-symmetric cross-section is selected such 

that the distance to the extreme fibers are nearly the same ratio as the respective allowable 

stresses. In the latter case, the moment carrying capacity in tension and compression are found 

separately and the smaller one is taken as the moment carrying capacity of the section. 

Section Modulus of Sections of Standard Geometry 

1. Rectangular section 

 

Let us consider a rectangular section of width b and depth d as shown in the Fig. The neutral axis 

coincides with the centroidal axis of the beam. 

 

 

Moment of inertia about the neutral axis, 
bd 3 

I = 
12 

Distance of outermost fibre from the neutral axis, y = 
d 

 

max 
2 

Section modulus, Z = 
I 

= 
bd 3 

 
2 

ymax 12 d 



 

 

 

= 
1 

bd 2 
6 

Let  is the maximum bending stress developed at the outermost layer. 

 

Moment of resistance, M = Z = 
1 

bd 2 
6 

2. Hollow Rectangular section 
 

Let us consider a hollow rectangular section of size 

shown in the Fig. 17. 

B  D with a symmetrical opening b  d as 

 

 

 
 

Moment of inertia about the neutral axis, BD 3 
− 

bd 3 

12 

 
Distance of outermost fibre from the neutral axis, 

12 

y = 
D 

max 
2 

Section modulus, Z = 
I 

= 
BD 3 − bd 3 

 
2 

ymax 12 D 

= 
1 (BD 3 − bd 3 ) 
6 D 

Let  is the maximum bending stress developed at the outermost layer. 

Moment of resistance, 

3. Circular section 

M = Z = 
1 

 
6 

(BD 3 − bd 3 ) 

D 

Let us consider a circular section of diameter d as shown in the Fig. 18. 

I = 



 

 

 

 
 

 

Moment of inertia about the neutral axis, 
d 4 

I = 
64 

 
Distance of outermost fibre from the neutral axis, y = 

d 

max 
2 

Section modulus, Z = 
I 

= 
d 4 

 
2 

ymax 

 

= 
d 3 

32 

64 d 

Let  is the maximum bending stress developed at the outermost layer. 

d 3 

Moment of resistance, M = Z =  
32 

4.  Hollow Circular section 

 

Let us consider a hollow circular section of external and internal diameter D and d respectively 

as shown in the Fig. 19. 

 

 

 

Moment of inertia about the neutral axis, I = 
   (D 4 − d 4 ) 
64 



 

 

Distance of outermost fibre from the neutral axis, y = 
D 

max 
2 

Section modulus, Z =  
I 

ymax 

= 
 (D 4 − d 4 ) 

2 

64 D 

= 
   (D 4 − d 4 ) 
32D 

Let  is the maximum bending stress developed at the outermost layer. 

 

Moment of resistance, M = Z = 
   (D 4 − d 4 ) 
32D 

Design of beam for bending 

 

Design of beam involves the determination of the size (cross-section) of the beam for given 

loading condition. The maximum bending moment of the beam is determined from the loading 

condition. Given the bending moment and permissible bending stress of the material of the beam, 

the section modulus of the beam is determined from the expression of bending stress. Once the 

section modulus is known, width and depth can easily determined assuming the depth to width 

ratio. 

Beam of uniform strength 

 

In practice, a beam of uniform cross section is designed for moment of resistance same as the 

maximum bending moment that the beam is supposed to carry. Hence, the material in all sections 

except the section of maximum bending moment remains under-stressed and underutilized. 

Although practical, such a beam is uneconomical. Ideally, a beam of varying cross-section 

should be designed so that all sections attain the maximum permissible stress simultaneously. A 

beam in which permissible stress at all sections is reached simultaneously under a given loading, 

is called a beam of uniform strength. 

A beam of uniform strength can be obtained in different ways 

a) By varying the width of beam and keeping the depth constant 

b) By varying the depth of beam and keeping the width constant 

c) By varying both width and depth 

 

By varying the width of beam and keeping the depth constant 



 

 

Derive the formula for cross section of a rectangular beam of uniform strength for a cantilever 

beam of length L carrying concentrated load at free end by keeping the depth constant. 

Consider a cantilever beam of length L and uniform depth d carrying a concentrated load W at its 

free end as shown in the Fig. 20. Let the width varies from a minimum at its free end to a 

maximum of b near the fixed end. 

It is obvious that the bending moment varies from minimum zero at the free end to maximum at 

WL at the fixed support. 

 

Bending moment at any section at a distance of x from the free end, 

M = Wx 
 

 

From expression of flexure, we xhave 

M = Z 

Wx = Z 

Where σ is the maximum stress at every section of the beam. 
 

If bx width at any section XX, then 
b d 2 

Z =   x  

6 



 

 

b d x 

x 

= b 

   

 

  = 
Wx 

  x  

6 

= 
6Wx 

b d 2 

 

Similarly, maximum stress at support,  

 

Equating equation () and (), we have 

 
6Wx 

b d 2 

= 
6WL 

bd 2 
 

 

 

= 
6WL 

bd 2 

 
 x  bx  

L 
 

  

At free end, i.e., x = 0, the width of beam b0 = 0 
 

At the fixed end, i.e., x = L, the width bL 
= b

 L  
= b L 

  

 

By varying the depth of beam and keeping the width constant 

 

Consider a cantilever beam of length L and uniform width b carrying a concentrated load W at its 

free end as shown in the Fig. 20. Let the depth varies from a minimum at its free end to a 

maximum of d near the fixed end. 

 

 

 

2 



 

 

 L  
 

L 
 

  

bd x 

x 

It is obvious that the bending moment varies from minimum zero at the free end to maximum at 

WL at the fixed support. 

 

Bending moment at any section at a distance of x from the free end, 

M = Wx 

From expression of flexure, we xhave 

M = Z 

Wx = Z 

Where σ is the maximum stress at every section of the beam. 
 

If bx width at any section XX, then 
bd 2 

Z =  x  

6 
 

  = Wx 
= 

6Wx 

 

 

 

Similarly, maximum stress at support,  

 

Equating equation () and (), we have 

2 

 x  

6 

 

= 
6WL 

bd 2 

bd 2 

 
6Wx 

= 
6WL 

bd 2 bd 2 

 

 

dx = d 

 

At free end, i.e., x = 0, the depth of beam, 

 

 

At the fixed end, i.e., x = L, the depth, d L 

d0 = 0 

 

= d = d 

 x  
 

L 
 

  



 

 

=  

Numerical 

 

1. A rectangular beam of breadth 100 mm and depth 200 mm is simply supported over a span of 

4 m. The beam is loaded with an uniformly distributed load of 5 kN/m over the entire span. 

Find the maximum bending stresses. 

Solution: 

Breadth of the beam, b = 100 mm 

Depth of beam, d = 200 mm 
 

Moment of inertia, I = 
1 

bd 3 = 
12 

1 
100  (200)3 

= 66.67 106 mm4 
12 

Span of beam, l = 4 m 
 

Uniformly distributed load, w = 5 kN/m 

 

Maximum bending moment at centre of beam, 

 

 
wl 2 

M = 
8 

 

 

= 
5  42 

8 

 

= 10 kN.M = 107 N.mm 

 

 

Neutral axis passes through the centroid of section. 

The distance of top and bottom fibre from the neutral axis, y = 100 mm 
 

Thus, maximum bending stress,  = 
M 

I 

107 
 y 

66.67 106 
100 



 

 

 

= 15 N / mm2 

 

2. A beam of I-section shown in Fig. 23 is simply supported over a span of 10 m. It carries a 

uniform load of 4 kN/m over the entire span. Evaluate the maximum bending stresses. 

 

Solution: 

 

Moment of inertia, 

 

 

I = 
1 (BD 3 − bd 3 ) = 
12 

 

 
1 (300  6603 − 280  6003 ) 

12 

 

= 21.474 108 mm4 

 

Span of the beam, l = 10 m 

Uniformly distributed load, w = 4 kN/m 

 

 

Maximum bending moment at centre of beam, 
4 102 

M = 
8 

= 50 kN.m 

 

= 5107 N.mm 

 

Neutral axis passes through the centroid of I-section. 

The distance of top and bottom fibre from the neutral axis, y = 330 mm 



 

 

 

Thus, maximum bending stress,  = 
M 

I 

5 107 
y = 

21.474 108 
 330 = 7.68 N / mm2 

 

The bending stress at top and bottom fibres = 7.68108 N / mm2 

 

3. A beam of an I-section shown in Fig. 24 is simply supported over a span of 4 m. Find the 

uniformly distributed load the beam can carry if the bending stress is not to exceed 100 

N/mm2. 

 

Solution: 

 

Moment of inertia, 

 

 

I = 
1 (BD 3 − bd 3 ) = 
12 

 

 
1 (200  3003 − 180  2603 ) 

12 

 

= 180.36 106 mm4 

 

Maximum bending stress, σmax = 100 N/mrn2 

Span of beam, l = 4 m 

Extreme fibre distance, ymax = 150 mm 
 

 

Section modulus, Z =  
I 

ymax 

= 
180.36 106 

150 
= 1242400 mm3 

 

Maximum bending moment, M =  max Z = 100 1242400 

 

= 124240000 N.mm 



 

 

= 124.24 kN.m 
 

But M = 

 

 

124.24 = 

wl 2 
 

 

8 

w  (4)2 

 

8 

w = 
124.24  8 

= 64.12 kN / m 
16 

The maximum uniformly distributed load the beam can carry = 64.12 kN/m. 

4. A timber beam of rectangular section carries a load of 2 kN at mid-span. The beam is simply 

supported over a span of 3.6 m. If the depth of section is to be twice the breadth, and the 

bending stress is not to exceed 9 N/mrn2, determine the cross-sectional dimensions. 

Solution: 

Span of the beam, l = 3.6 m 
 

Uniformly distributed load, w = 2 kN 

Allowable bending stress, σallow = 9 N/mm2 

 
Maximum bending moment at centre of beam, 

 

 

 

 

M = 
WL 

= 
2  3.6 

= 1.8 kN.m 

4 4 
 

 

 

 

From the flexural relationship, we have 

 

 

 

Z = 

 
1 

bd 2 = 
6 

= 1.8106 N.mm 

 
M 

 
 

 allow 

 

1.8 106 
 

 

9 
 

bd 2 = 
1.8 106 

9 
 6 = 1.2 106 

Depth of section is to be twice the breadth, i.e., d = 2b 
 

So, we have b(2b)2 
= 1.2 106 



 

 

allow 

 

b3 = 
1.2 106 

4 
= 0.3106 

b = 64.94 mm 

 

d = 2  64.943 = 129.886 mm 

 

Therefore, width of beam = 65 mm, and depth of beam = 130 mm 

5. A rectangular beam of width 200 mm and depth 300 mm is simply supported over a span of 5 

m. Find the safe uniformly distributed load that the beam can carry per metre length if the 

allowable bending stress in the beam is 100 N/mm2. 

Solution: 

Span of beam, l = 5 m 

Width Breadth of the beam, b = 100 mm 

Depth of beam, d = 200 mm 

Allowable bending stress, σallow = 100 N/mm2 

Section modulus, Z = 
1 

bd 2 = 
1 

 200  3002 = 3 106 mm3 

6 

 

Moment of resistance of the beam, 

2 

 

M =  Z = 100  3 106 

 

= 300 106 N.mm = 300 kN.m 

 

Maximum bending moment at the centre of the beam, 
 

M = 

 

 

300 = 

wl 2 
 

 

8 

w  (5)2 

 

8 

 w = 
300  8 

= 96 kN.m 
25 

So, the load that the beam can carry is 96 kN/m. 



 

 

allow 

6. A rectangular beam of size 60 mm x 100 mm has a central rectangular hole of size 15 mm x 

20 mm. The beam is subjected to bending and the maximum bending stress is limited to 100 

N/mm2. Find the moment of resistance of the hollow beam section. 

Solution: 

External dimension of hollow rectangular beam: B = 60 mm, D = 100 mm 
 

Size of the central hole: b = 15 mm, d = 20 mm 

Moment of inertia of the hollow beam section, I = 

 

 
1 (BD 3 − bd 3 ) = 

12 

 

 
1 (60 1003 − 15  203 ) 

12 

= 4.999 106 mm4 
 

 

 

 

Extreme fibre distance, 
 

y
max 

= 
100 

= 50 mm 
2 

 

Section modulus, Z =  
I 

ymax 

= 
4.999 106 

50 
= 9.98 104 mm3 

 

Allowable bending stress, σallow = 100 N/mm2 
 

Moment of resistance, M =  Z = 100  9.98 104 

 

= 9.98 106 N.mm 

 

= 9.98 kN.mm 



 

 

3 

7. Find the ratio of the dimensions of the strongest rectangular beam that can be cut from a 

circular log of wood of diameter D. 

Solution: 

Let b be the width and d the depth of the strongest rectangular beam section as shown in the Fig. 

26. 

 

From the geometry, we have b2 + d 2 = D2 

 

d 2 = D2 − b2 

Section modulus of the rectangular section, 

Z = 
1 

bd 2 = 
1 

b(D 2 − b2 ) 
6 6 

= 
1 (bD 2 − b3 ) 
6 

Strongest section in bending should have largest section modulus. 
 

 

 

Hence, 
dZ 

= 
1 (D 2 − 3b2 ) = 0 

db 6 

 

3b 2 = D 2 

b = 
D 



 

 

D 2 − b2 

2 

1 2 

 

And d = = 

 

= 
  
  D 
 3  

8. Two sections of same material; one of solid circular section and the other hollow circular 

section of internal diameter half the external diameter, have the same flexural strength. 

Which one of them is economical? 

Solution: 

 

Let D = Diameter of solid circular section 

D1 = Outer diameter of hollow circular section 

Inside diameter of hollow circular section, D2 = 0.5 D1 

 

 

 

 

Section modulus of solid section, Z = 
   

D3 
1 32 

 
Section modulus of hollow section, Z = 

    (D 4 − D 4 ) = 
   D 4 − (0.5D )4  

32D1 32D1 

= 
   

 0.9375D3 

32 1 

Since both sections have same flexural strength, their section modulus should be equal. 

 
Hence, 

   
D3 = 

   
 0.9375D3 

32 32 1 

D  − 2 D 2 

3 

2D 2 

3 
= 

2 1 1 



 

 

1 

 

D3 = 0.9375D3 
 

D = 0.98D1 

 

 
Cross - sectional area of solid section 

 

 

 
= 

As = 
 

D 2 
2 4 = 

D 
Cross - sectional area of hollow section A  2 2 D 2 − (0.5D )2  

h (D 
4 

− D2 
) 1 1 

D 2 1  D  
2 

= 0.75D 2 = 0.75   
D 

 

1  1  

= 
1 

0.75 
 (0.98)2 

= 1.28 

Since the sectional area of hollow section is less than that of solid section, for a given length of 

the beam, the weight of hollow section will be less. Hence hollow section is economical. 

9. A cantilever of 2 m length and square section 200 mm x 200 mm, just fails in bending when a 

point load of 12 kN is placed at its free end. A beam of rectangular cross section of same 

material, 150 mm wide and 300 mm deep, is simply supported over a span of 3 m. Calculate 

the maximum concentrated load that the beam can carry at its centre without failure. 

Solution: 

The two beams with loading conditions are shown in the Fig. 
 

 

Maximum bending moment in cantilever beam, Mc = 12  2 = 24 kN.m 

= 24 106 N.mm 

1 



 

 

allow 

 

Let σallow is the stress at which the beam fails, Mc  =  

 

 

allow 
Z = 

1 
bd 2 

6 

 

 

allow 

1 
 200  2002   

6 

 

 

allow 

 

= 24 106 

 = 18 N / mm2 

Let W kN be the maximum central concentrated that the beam can carry without failure. 

Maximum bending moment at the mid span, M = 
WL 

= 
W  3 

= 0.75W kN.m 
s 4 4 

= 0.75 106 W N.mm 

Moment of resistance of simply supported beam section, 

M = Z = 18  
1 

150  3002 
 

R allow 

 

= 40.5106 

6 

N.mm 

 

Equating maximum bending moment (Ms) to moment of resistance (MR), we have 

 

0.75106 W = 40.5106 

 

W = 54 kN 

 

10. For a given sectional area, compare the moments of resistance of circular and square section. 

Solution: 

Let the diameter of the circular section be d. 
 

 

Area of circular section, A = 
 

d 2 
4 

 

Section modulus, 
Z = 

   
d 3 

C
 

32 

Let the square section has side of a. 

Since both circular and square section have the same area, 

a 2 = 
 

d 2 
4 

 

a = 
  

d 
2 



 

 

   

 

 

Section modulus of square section, 
a3 

ZS = 
6 

= 
48  

d 

Ratio of Section modulus of square section and circular section, 
 

 

  
d 

3 
ZS  =   48  = 1.18 

ZC 
   

d 
3 

32 

Hence, flexural strength of square section is 1.18 times more than that of circular section of equal 

area. 

11. Compare the moments of resistance of a square section of given material when the beam 

section is placed such that (i) two sides are parallel and (ii) one diagonal vertical. 

Solution: 

Square section with two sides horizontal is shown in the Fig. 29(a). 

a3 

Section modulus of square section with two sides horizontal, 

 

Let σ is the permissible flexural stress. 

 a3 

Z1 = 
6 

Moment of resistance, M1 = Z1 = 
6 

 

 

Square section with on diagonal vertical is shown in the Fig. 29(b). 

Moment of inertia about the neutral axis, i.e., the diagonal of the square section = Twice the 

moment of inertia of triangle of base 2a and height a / 2 . 

3 



 

 

2 

2  a3 

  

 

2a
 a  

I 2 = 2  
  2   

12 
= 

a 4 

 

12 
 

Extreme fibre distance, 
 

ymax = 
2a 

=  
a 

2 

Section modulus of square section with one diagonal vertical, 

a 4 

Z  =  
I 2  =  12  = 

ymax  
a 12 

Moment of resistance, M 2 = Z 2 = 
12 

Ration of the moments of resistance of section in two different positions, 

 a3 
 

 

M1 =  6  = 
M 2 2 a3 

 

12 

= 1.414 

12. Three beams of same material with circular, square and rectangular cross sections have the 

same length and are subjected to same maximum bending moment. The depth of the 

rectangular section is twice the width. Compare their weights. 

Solution: 

Fig. 30 shows three different sections, circular, square, and rectangular of beam. 

 

2 

2a3 

2 

3 

2 



 

 

Let Diameter of circular section = d, 

Side of square section = a, and 

Width and depth of rectangular section are b and 2b respectively. 

As beams of three different cross sections of equal allowable stress are subjected same maximum 

bending moment, they must have same strength. Hence, all sections should have equal section 

modulii. 

 

Section modulus of circular section, 

 

ZC = 
d 3 

 
 

32 

a3 

Section modulus of circular section, ZS = 
 

 

6 

b(2b)2 
2 

Section modulus of circular section, ZR = = b3 
6 3 

We have 
d 3 

32 
= 

a3 

6 
= 

2 
b3 

3 

 d = 1.193a and b = 0.6299a 

d 2 
Weight of circular beam Area of circular section 4   d  2 
Weight = of square beam = Area of square section a 2 =    4 a 

  

= 
 

(1.193)3 
= 1.118 

4 

Weight of rectangula r beam Area of rectangula r section 2b2  b  2 
Weight = of square beam Area of square section = = 2   a 2 a 

  

= 2(0.6299)2 
= 0.7936 

 

13. A beam of symmetric I-section has flange size 100 mm x 15 mm, overall depth 250 mm. 

Thickness of web is 8 mm. Compare the flexural strength of this section with that of a beam 

of rectangular section of same material and area. The width of rectangular section is two- 

third of its depth. 

Solution: 

The I-section and the rectangular section of equal area are shown in the Fig. 31. 



 

 

I Area of I-section, A = (2 100 15) + (220  8) = 4760 mm2 
 

Moment of inertia of I-section, I I = 
100  2503 

12 
− 

92  2203 

12 
= 4.8574 mm4 

 

Section modulus of I-section, ZI = 
I 

ymax 

= 
4.8574 107 

125 

 

= 388592 mm3 

 

 

Let the depth of the rectangular section = d mm 

Width of the rectangular section, b = 
2 

d 
3 

Area of the rectangular section, A  = 
2 

d  d = 
2 

d 2 
R 3 3 

Since the area of two sections are equal, 
2 

d 2 = 4760 
3 

and 

d = 84.50 mm 

b = 
2 

 84.50 = 56.33 mm 
3 

 

Section modulus of rectangular section, 

 

ZR = 
bd 2 

6 

56.33  (84.50)2 

 

6 

 

= 67035mm3 

= 



 

 

 

Flexural strength of I - section 
= 

ZI 
= 

388592 
= 5.80 

Flexural strength of rectangula r section ZR 
67035 

 

14. A cast iron beam of an I-section with top flange 80 mm x 40 mm, bottom flange 160 mm x 40 

mm and web 120 mm x 20 mm. If the tensile stress is not to exceed 30 N/mm2 and 

compressive stress 90 N/mm2, what is the maximum uniformly distributed load the beam can 

carry over a simply supported span of 6 m, if the bottom flange is in tension? 

Solution: 

The cross section of the beam is as shown in the Fig. 32. 

Let y is the distance of the centroid (neutral axis) from the bottom fibre (tension fibre). 

 

 

y = 
ai yi 

A 
= 

160  40  20 + 20 120 100 + 80  40 180 

80  40 + 20 120 + 80  40 120 

 

= 
944000 

= 78.67 mm 
12000 

Moment of inertia, 
 

I = 
1 

160  403 + 160  40  (78.67 − 20)2 
+ 

12 

1 
 20 1203 + 20 120  (100 − 78.67)2 

12 
 

 

 

= 60138670 mm4 

+ 
1 

 80  403 + 80  40  (180 − 78.67)2 

12 



 

 

y c 

 

Tension occurs at the bottom and compression at the top. 

Bottom extreme fibre distance (large flange, tension flange), 

 

 

yt = 78.67 mm 

Top extreme fibre distance (compression flange), yc = 200 − 78.67 = 121.33mm 

 

Moment of resistance from tensile strength consideration, 
 

I 
allow 

t 

= 30  
60138670 

= 22933266.81N.mm 
78.67 

 

= 22.933 kN.m 

 

Moment of resistance from compressive strength consideration, 
 

I 
allow 

c 

= 90  
60138670 

= 44609579.65 N.mm 
121.33 

 

= 44.609 kN.m 

 

Hence, actual moment resistance is smaller of the above two, i.e., 22.993 kN 
 

Maximum bending moment, = 
wl 2 

8 
= 

w  62 

8 
= 4.5w 

Equating the maximum bending moment with the moment of resistance, we have 

4.5w = 22.933 

w = 5.096 kN / m 

 

Alternatively, 

Suppose the maximum stress in compression at the top is 90 N/mm2. 

Corresponding maximum stress in tension at the bottom, 

  = 
y

t   
= 

78.67 
 90 

t c 
121.33 

= 58.355  30 N / mm2 (Not possible) 

But the permissible tensile stress is only 30 N/mm2. Hence, let the maximum tensile stress be 

allowed to reach 30 N/mm2. 

y 

y 

=  

=  



 

 

y t 

Corresponding maximum compressive stress at the top, 
 

  = 
y

c   
 = 

121.33 
 30  

c t 78.67 

= 42.268 N / mm2  90 N / mm2 (OK ) 

Hence, the beam will fail in tension at the bottom flange. 

Moment of resistance from tensile strength consideration, 

I 
allow 

t 

= 30  
60138670 

= 22933266.81N.mm 
78.67 

 

= 22.933 kN.m 
 

Maximum bending moment, = 
wl 2 

8 
= 

w  62 

8 
= 4.5w 

Equating the maximum bending moment with the moment of resistance, we have 

4.5w = 22.933 

w = 5.096 kN / m 

 

15. Two wooden planks 60 mm x 160 mm each are connected together to form a cross section of 

a beam as shown in the Fig. If a sagging bending moment of 3500 N.m is applied about the 

horizontal axis, find the stresses at the extreme fibre of the cross-section. Also calculate the 

total tensile force on the cross-section. 

 

y 
=  



 

 

b Self 

b G 

G b 

Solution: 

Let us locate the centroid and hence the neutral axis, and find moment of inertia of the section. 

Consider the bottom of T-section as the reference axis for location of centroid. The T-section 

consists of two components, web and flange. 

The relevant calculations are shown in the table. 

Distance of the centroidal axis GG from the bottom edge, 

y = 
 ay 

= 
 2610000 

= 135.94 mm 

 a 19200 

Moment of inertia at the bottom edge, I  = I + ay2 

= 23.36 106 + 408 106 = 431.36 106 mm4 
 

 

 

 
 

But, I = I  + (a)y 2 

I = I − (a)y 2 = 431.36106 −19200135.942 

= 76190074.88 mm4 

 

Let the maximum tensile and compressive stresses at extreme fibres be σtmax  and σcmax 

respectively. 



 

 

 

Components Area a 

(mm2) 

Centroidal 

distance from 

the bottom 

edge, y 

(mm) 

ay 

(mm3) 

ay2 

(mm4) 

ISelf 

(mm4) 

Web 9600 80 786000 61.44 x 106 60 1603 
=  6 20.48 10 

12 

Flange 9600 190 1824000 346.56 x 106 160  603 
=  6 

 2.88 10 
12 

Total 19200  2610000 408 x 106 23.36 x 106 

 

We have, 

 

 
t max 

= 
M 

y 
I 

t 
= 

3500 1000 

76190074.88 
135.94 

 

= 6.245 N / mm2 
 

 

 
c max 

= 
M 

y 
I 

c 
= 

3500 1000 

76190074.88 
 84.06 

 

= 3.861N / mm2 

 

Total tensile force = Average tensile stress x area of tensile zone 

= 
6.245 

 (135.94  60) = 25468.359 N 
2 

16. A water main of 1000 mm internal diameter and 10 mm thickness is running full. If the 

bending stress is not to exceed 56 N/mm2, find the greatest span on which the pipe may be 

freely supported. Steel and water weigh 76800 N/m3 and 10000 N/m3 respectively. 

Solution: 

Internal diameter of the pipe, d = 1000 mm = 1 m 

External diameter of pipe, D = 1000 + 2 x 10 = 1020 mm = 1.02 m 

Consider 1 m length of the water main. 

Area of the pipe section, A = 
 (D 2 − d 2 ) = 

 (1.022 − 12 ) 
4 4 

= 0.03173m2 

  



 

 

 



 

 

 

 
 

 
Area of the water section, A = 

 
d 2 = 

 
12 

4 4 

 

= 0.7854 mm2 

 

Weight of one metre length of pipe = 0.03173 x 1 x 76800 = 2493.978 N 

Weight of water in one metre length of the pipe = 0.7854 x 1 x 10000 = 7854 N 

Total load on the pipe per metre run = 2493.978 + 7854 = 10347.978 N 

Let the maximum span of the pipe l m. 

wl 2 10347.978l 2
 2 

Maximum bending moment, M = = 
8 8 

= 1293.497l N.m 

= 1293.497 1000l 2 N.mm 

Moment of inertia of the pipe section about the neutral axis, 

I = 
   (D 4 − d 4 ) = 

   (10204 − 10004 ) 
64 64 

= 4046.379106 mm4 

We know, 
M 

= 
 

I y 

1293.497 1000l 2 
= 

4046.379 106 

56 

510 



 

 

l 2 = 
56  4046.379 106 

510 1293.497 1000 
= 343.494 

l = 18.533m 



 

 

Shear Force and Bending Moment 

 
TYPES OF FORCES: Basically, structural members experience two types of forces. 

 

External Forces: Actions of other bodies on the structure under consideration are known as 

external forces. 

Internal Forces: Forces and couples exerted on a member or portion of the structure by the rest 

of the structure. Internal forces always occur in equal but opposite pairs. 

TYPES OF LOAD 

The following are the important types of load which act on a beam. 

 

1. Concentrated or point load, 

2. Uniformly distributed load, and 

3. Uniformly varying load 

1. Concentrated or Point Load: Load acting at a point or over very limited area compared to 

the length of the beam is known as concentrated load or point load. 

 

 

2. Uniformly Distributed Load: Load that is spread over a beam with uniform rate of loading, 

(‘w’ per unit run) is known as uniformly distributed load or UDL. Uniformly distributed load 

is also known as rectangular load. 



 

 

 

 

3. Uniformly Varying Load: Load that is spread over a beam with the rate of loading 

uniformly from one point to the other along the beam is known as uniformly varying load. 

Uniformly varying distributed load is also known as triangular load. 

 

 

4. Parabolic Load: If the variation of load distribution follows the equation of parabola, it is 

known as parabolic distributed load or simply parabolic load. 

 

TYPES OF SUPPORTS 

 

1. Simple support 

2. Roller Support 



 

 

3. Pin (or) Hinge Support 

4. Fixed support 

 

Simple Supports 

 

Simple support is just a support on which structural member rests. It is idealized to be a 

frictionless surface support. It only resists vertical movement of support. A simple support is free 

to rotate and translate along the surface upon which it rests. The resulting reaction force is 

always a single force perpendicular to the plane of support. 

The horizontal or lateral movement allowed is up to a limited extent and after that the structure 

loses its support. For example, if a plank is laid across gap to provide a bridge, it is assumed that 

the plank will remain in its place. It will do so until a foot kicks it or moves it. At that moment 

the plank will move because the simple connection cannot develop any resistance to the lateral 

load. 

This type of support is not commonly used in structural purposes. However, Simple supports are 

often found in zones of frequent seismic activity. 

Roller Supports 

 

Roller supports are free to rotate and translate along the surface upon which they rest. The 

surface can be horizontal, vertical, or sloped at any angle. They cannot resist parallel or 

horizontal forces and moment. They only resist perpendicular forces. Hence, the resulting 

reaction force is always a single force that is perpendicular to the plane of support. 

This type of support is provided at one end of bridge spans. The reason for providing roller 

support at one end is to allow contraction or expansion of bridge deck with respect to 

temperature differences in atmosphere. If roller support is not provided then it will cause severe 

damage to the banks of bridge. But this horizontal force should be resisted by at least one support 

to provide stability so, roller support should be provided at one end only not at both ends. 

Pinned Supports 

A pinned support is same as hinged support. It can resist both vertical and horizontal forces but 

not a moment. It allows the structural member to rotate, but not to translate in any direction. 



4 

 

 

Many connections are assumed to be pinned connections even though they might resist a small 

amount of moment in reality. It is also true that a pinned connection could allow rotation in only 

one direction; providing resistance to rotation in any other direction. In human body knee is the 

best example of hinged support as it allows rotation in only one direction and resists lateral 

movements. Ideal pinned and fixed supports are rarely found in practice, but beams supported on 

walls or simply connected to other steel beams are regarded as pinned. The distribution of 

moments and shear forces is influenced by the support condition. 

Best example for hinged support is door leaf which only rotates about its vertical axis without 

any horizontal or vertical movement. 

Fixed Supports 

Fixed support can resist vertical and horizontal forces as well as moment since they restrain both 

rotation and translation. They are also known as rigid support for the stability of a structure there 

should be one fixed support. A flagpole at concrete base is common example of fixed support In 

RCC structures the steel reinforcement of a beam is embedded in a column to produce a fixed 

support as shown in above image. Similarly all the riveted and welded joints in steel structure are 

the examples of fixed supports Riveted connection are not very much common now a days due to 

the introduction of bolted joints. 

Table 1. Idealized Structural Supports 

 

Types of 

supports 

Real life Example Symbol Movement allowed 

and prevented 

Unknown reactions 

Frictionless 

or Simple 

support 

 

 

 

 

Prevented: vertical 

translation 

Allowed: horizontal 

translation and 

rotation 

 

 

Roller 

support 

 

 

 

 

Prevented: vertical 

translation 

Allowed: horizontal 

translation and 

rotation 

 

 



 

 

 

Pinned or 

hinged 

support 

 

 

 

 

Prevented: horizontal 

translation and vertical 

translation 

Allowed: Rotation 

 

 

Fixed or 

Built-in 

support 

 

 

 

 

Prevented: horizontal 

translation, vertical 

translation and 

rotation 

 

 

 

 

BEAM: 

 

A Beam is defined as a structural member subjected to transverse shear loads (load normal to the 

axis of the beam) during its functionality. Due to the transverse shear loads, a beam is subjected 

to variable shear force and bending moment. Beam is a flexural member, designed primarily for 

bending. Analysis of beam pertains to the calculations of shear forces and bending moments 

along the length of the beam and drawing of shear force diagram and bending moment diagram. 

TYPES OF BEAMS: Depending upon the degrees of freedom and support conditions beams are 

of various types. 

Beams 

 
Statically determinate beam 

Number of reactions in the beam is 

equal to number of useful static 

equations of equilibrium 

Statically indeterminate beam 

Number of reactions in the beam is 

more than number of useful static 

equations of equilibrium 

 

  

Cantilever 

beam 

Simply 

supported 

beam 

Overhanging 

beam 

Fixed beam Propped 

Cantilever 

beam 

Continuous 

beam 



 

 

Statically Determinate Beam 

 

A beam is said to be statically determinate if all its reaction components can be calculated by 

applying three conditions of static equilibrium. 

Statically Indeterminate Beam 

 

When the number of unknown reaction components exceeds the static conditions of equilibrium, 

the beam is said to be statically indeterminate. To determine the unknown reactions additional 

equations of deformations are required. 

The following are the important types of beam 

1. Cantilever beam, 

2. Simply supported beam, 

3. Overhanging beam, 

4. Fixed beams, and 

5. Continuous beam. 

1. Cantilever beam 

A beam which is fixed or built into a rigid support at one end and free at the other end is known 

as cantilever beam. Such beam is shown in Fig. The built-in support prevents displacements as 

well as rotations of the end of the beam. Cantilever is statically determinate. 

 

 

2. Simply Supported beam 

A beam supported or resting freely on the supports at its both ends is known as simply supported 

beam. Such beam is shown in Fig. The end supports are free to rotate and have no moment of 

resistance. Simply supported beam is statically determinate beam. 



 

 

 

 

3. Overhanging Beam 

A beam supported over two supports and extended beyond one or both the supports is known as 

overhanging beam. An overhanging beam, shown in Fig., is supported by a pin and a roller 

support, with one or both ends of the beam extending beyond the supports. It is a statically 

determinate beam. 

 

4. Fixed Beam 

A beam with both ends fixed or built into the supports or walls, is known as fixed beam. Such 

beam is shown in Fig. A fixed beam is also known as a built-in or encastred beam. It is a 

statically indeterminate beam. 

 

 

5. Propped cantilever beam 

A beam with one end fixed and the other end simply supported over a roller is known as propped 

cantilever beam or simply propped cantilever. Propped cantilever is statically indeterminate. 



 

 

 

 

 

6. Continuous Beam 

A beam which is supported over more than two supports is known as continuous beam. 

Continuous beam is also statically indeterminate. 

 

 

SHEAR FORCE AND BENDING MOMENT: 

 

The beams transfer the transverse (vertical) loads to the supports. In the process of load transfer, 

they experience shear force and bending moments. 

 

 

 



 

 

Shear force at any section of a beam is defined as the net or unbalanced vertical force on either 

side of the section. It is the algebraic sum of vertical components of all the forces acting on the 

beam on either left side or right side of the section. The effect of shear force is to shear off or cut 

the member at a section. It is similar to the effect of scissor cutting the page of paper. 

 

 

The moment which tends to bend the beam in plane of load is known as bending moment. In 

other word bending moment at any section of a beam is the net or unbalanced moment due to 

all forces on either side of the section. Bending moment at any section is the algebraic sum of 

the moments due to all forces acting on the beam on either right or left side of the section. The 

effect of bending moment is to bend the element. 



 

 

Sign convention: 

The shear force and bending moment are vector quantities and as a matter of convenience are 

assigned the following sign convention. 

Shear force acting in the upward direction to the left hand side of the section and downward 

direction to the right hand side of the section is considered to be positive & vice-versa. 

 

 

Bending moment is considered to be positive when it is acting in the clockwise direction on the 

left hand side of the section (L.H.S) (or) when it is acting in the counter-clockwise direction on 

the right hand side of the section (R.H.S) as the section & vice versa. 

 

 

SHEAR FORCE AND BENDING MOMENT DIAGRAMS: 

 

Graphical representation of variation of shear force along the length of the beam for any given 

loading condition is known as shear force diagram (SFD). If x denotes the length of the beam, 

then shear force ‘F’ is function of x, i.e. F(x). 

Similarly, graphical representation of variation of bending moment along the length of the beam 

for any given loading condition is known as bending moment diagram (BMD). If x denotes the 

length of the beam, then bending moment is function of x, and is denoted as M(x). 



 

 

Shear force diagram and bending moment diagram are helpful for further analysis and design of 

beam. 

SFD and BMD of a beam reveal the following important information at salient points in the 

beam. These are maximum shear force, maximum bending moment, point of contralexture or 

point of inflexion, etc. 

RELATIONS BETWEEN LOAD, SHEAR FORCE AND BENDING MOMENT 

 

Consider a beam AB carrying generalized loading as shown in the figure. Take an element of 

infinitesimal length δx between section 1-1 and 2-2 at a distance of x from the left hand support 

A. The free body diagram of the element is drawn with positive sense of the shear forces and 

bending moments. 

The intensity of loading over the length of the element may be taken as constant, i.e., w. 

Considering equilibrium of the element, 

Resolving the forces vertically, V = 0 

F = w x + F +  F 

 F = −w x 

 
 F 

= −w 

 x 
 

In the limiting case, as  x → 0, 
dF 

= −w 
dx 

(1) 

So, the rate of change of shear force is equal to the intensity or rate of loading. 

Taking moments of the forces and couples about the section 2-2, M 2 = 0 

( x)2 

M +  M + w 
2 

= M + F x 

Neglecting small quantities of higher order, we have 

 M 
= F 

x 



 

 

 

In the limiting case as  x → 0, 
dM 

= F 
dx 

(2) 

The above equation shows that the rate of change of bending moment is equal to the shear force 

at the section. Also bending moment would be maximum at a section where shear force is zero. 

 

 

Evaluation of Shear Force and Bending Moment: 

 

Thus analysis of beam for shear force and bending moment is carried out by the following 

process. 



 

 

1. Determine the reactions at the supports by considering the entire beam as a rigid body 

and applying equations of equilibrium. 

2. Take sections at different points on the beam near supports and load application points. 

3. Apply equilibrium analyses on resulting free-bodies to determine internal shear forces 

and bending moments. 

4. Draw shear force and bending moment diagram. 

5. Identify the maximum shear and bending-moment from plots of their distributions. 

6. Find the position of point of contaflexure or point of inflexion. 

 

 

Numerical 

 

1. Draw the Shear force and bending moment diagram for a cantilever beam of length L 

carrying a point load W at its free end. 

 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Sum of the vertical forces, V = 0, VA = W () 

Taking moment about A, MA  = 0 , W  L + MA  = 0 

MA = −WL (counter - clockwise ) 

Calculation of Shear force and bending moments: 

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B 

between B and A (0  x  L) . 

Shear force at 1-1, Fx = W 

Shear force at B, i.e., x = 0 FB = W 

Shear force at A, i.e, x = L, FA = W 

Bending moment at 1-1, M x = −Wx 

Bending moment at B, i.e, x = 0, MB = 0 



 

 

Bending moment at A, i.e, x = L, MA = −WL 
 

 

 

2. Draw the Shear force and bending moment diagram for a cantilever beam of length L 

carrying uniformly distribute load of intensity w over the entire span. 

 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Sum of the vertical forces, V = 0, VA = wL 
 

Taking moment about A, MA = 0 , wL  
 L 

+ M = 0 
2 

A 

 

M A = − 
wL2 

2 
(counter - clockwise ) 

Calculation of Shear force and bending moments: 



 

 

x    

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B 

between B and A (0  x  L) . 

Shear force at 1-1, Fx = wx 

Shear force at B, i.e., x = 0 FB = 0 

Shear force at A, i.e, x = L, FA = wL 
 

 

 

Bending moment at 1-1, M  = −wx  
 x  

= − 2 
wx2 

 
 2 

 

Bending moment at B, i.e, x = 0, MB = 0 

 

Bending moment at A, i.e, x = L, M A = − 

 

 

 

wL2 
 

 

2 

3. Draw the Shear force and bending moment diagram for a cantilever beam of length L 

carrying uniformly distribute load of intensity w per unit length from the fixed support to the 

centre of the beam. 



 

 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 
 

Sum of the vertical forces, V = 0, VA 
= 

 wL 

2 
 

Taking moment about A, M = 0 ,  wL 
 

 L 
+ M = 0 

A 2 4 A 

wL2 
M A = −  

8 
(counter - clockwise ) 

 

Calculation of Shear force and bending moments: 

Shear force and bending moment at the free end B, FB = 0; MB = 0 

Shear force and bending moment anywhere between B and C is zero since there is no load on the 

beam in this portion when considered from right side. 



 

 

2 

2 

2   

Now, considering C as the origin, take a section 1-1 at a distance of x from C between C and A 
 

0  x  
L  

. 
  
  

Shear force at 1-1, 

 

 

Fx = wx 

Shear force at A, i.e, x = L, F  = w 
L 

= 
wL 

  

A 2 2 

 x  wx2 
Bending moment at 1-1, M x = −wx   

2 
 = −  

2 
  

 L  2 

 

Bending moment at A, i.e, x = 
L 

, M 
2 

A 

w   

= − 
     

2 

= − 
wL2 

8 

4. Draw the Shear force and bending moment diagram for a cantilever beam of length L 

carrying uniformly distribute load of intensity w per unit length from the free end up to a 

distance of a. 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Sum of the vertical forces, V = 0, VA = wa 

 Taking moment about A, M = 0 , wa  
 

L − 
a  

+ M = 0 

 A    A 

 

M = − 
wa 

(L − 2a) 
A 

2 
(counter - clockwise ) 

Calculation of Shear force and bending moments: 

Shear force and bending moment at the free end B, FB = 0; MB = 0 

Now, considering B as the origin, take a section 1-1 at a distance of x from B between B and C 

(0  x  a). 

Shear force at 1-1, Fx = wx 



 

 

2 

 

Shear force at B, i.e, x = 0, FC = w 0 = 0 

Shear force at C, i.e, x = a, FC = wa 

 x  wx2 
Bending moment at 1-1, M x = −wx   

2 
 = −  

2 
 

 

Bending moment at C, i.e, x = a, M A = − 

 

wa2 
 

 

2 
 

 

Now, take a section 2-2 at a distance of x from B between C and A (a  x  L). 

Shear force at 2-2, Fx = FC = wa 

Shear force will remain same as wa from C to A. 

 Bending moment at 2-2, M = −wa  
 

x − 
a  

x    
  



 

 

2 

Bending moment at A, i.e., x = L, M = − 
 

− 
a  

= − 
wa 

(2L − a) 
x wa L   

  2 

5. A cantilever of 3.5 m long carries point loads of 15 kN, 15 kN and 7.5 kN at 1 m, 1 m and 

1.5 m respectively from the fixed end. Draw the Shear force and bending moment diagram 

for the beam. 

Solution: Calculation of Shear force and bending moments: 

Portion BD: At section 1-1 at a distance x from B between B and D (0  x  1.5m) 

Shear force at 1-1, Fx = 7.5 kN (constant from B to just right of D) 

Shear force at B, FB = 7.5 kN 

Shear force just right of D, FDL = 7.5 kN 
 

 



 

 

Bending moment at 1-1, M x = −7.5x 

Bending moment at B, i.e., at x = 0, MB = −7.5 0 = 0 

Bending moment at D, i.e., at x = 1.5, MD = −7.51.5 = 11.25kN − m 

Portion DC: At section 2-2 at a distance x from B between D and C (1.5  x  2.5m) 

Shear force at 2-2, Fx = 7.5 + 15 (constant from D to just right of C) 

Shear force at D, FD = 22.5 kN 

Shear force just right of C, FCL = 22.5 kN 

Bending moment at 2-2, M x = −7.5x − 15(x − 1.5) 

= −22.5x + 22.5 

Bending moment at C, i.e., at x = 2.5, MB = −22.5 2.5 + 22.5 = −33.75kN − m 

Portion CA: At section 3-3 at a distance x from B between C and A (2.5  x  3.5m) 

Shear force at 3-3, Fx = 7.5+ 15 + 15 (constant from C to A) 

Shear force at C, FC = 37.5 kN 

Shear force at A, FA = 37.5 kN 

Bending moment at 3-3, Mx  = −7.5x − 15(x − 1.5) − 15(x − 2.5) 

= −37.5x + 60 

Bending moment at A, i.e., at x = 3.5m, MB = −37.5 3.5 + 60 = −71.25kN − m 

6. A cantilever of 1.6 m long carries a uniformly distributed load of intensity 1.5 kN/m over the 

entire span and a point load of 2.5 kN at the free end. Draw the Shear force and bending 

moment diagram for the beam. 

Solution: 

Calculation of Shear force and bending moments: 

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B 

between B and A (0  x  1.6m). 

Shear force at 1-1, Fx = 2.5 + 1.5x 

Shear force at B, i.e., x = 0, FB = 2.5 + 1.5 0 = 2.5kN 

Shear force at A, i.e., x = 1.6 m, Fx = 2.5 + 1.51.6 = 4.9 kN 



 

 

   

B 

 

Bending moment at 1-1, M = −2.5x − 1.5x
 x  

x 
2 

  

= −2.5x − 0.75x 2 

Bending moment at B, i.e., x = 0, MB = 0 

Bending moment at A, i.e., x = 1.6, M = −2.51.6 − 0.751.62 

= −5.92 kN − m 
 

7. A cantilever of 1.5 m long is loaded with a uniformly distributed load of intensity 2 kN/m and 

a point load of 2.5 kN as shown in the figure. Draw the Shear force and bending moment 

diagram for the cantilever. 

Calculation of Shear force and bending moments: 

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B 

between B and D (0  x  0.25m). 

Shear force at 1-1, Fx = 2x 



 

 

   

D 

Shear force at B, i.e., x = 0, FB = 2  0 = 0 

Shear force just right of D, i.e., x = 0.25m, FD = 2 0.25 = 0.5kN 

Shear force at D, i.e., x = 0.25m, FD = 0.5 + 2.5 = 3kN 

 
Bending moment at 1-1, M = −2x

 x  
= − x 2 

x 
2 

 

Bending moment at D, i.e., x = 0.25, 

 

M = −(0.25)2 
= −0.0625 kN − m 

 

 

 



 

 

   

Now, take a section 2-2 at a distance of x from B between D and C (0.25  x  1.25m). 

Shear force at 1-1, Fx = 2x + 2.5 

Shear force at D, i.e., x = 0.25, FB = 2 0.25 + 2.5 = 3kN 

Shear force C, i.e., x = 1.25m, FD = 21.25 + 2.5 = 5kN 

 
Bending moment at 1-1, M = −2x

 x  
− 2.5(x − 0.25) 

x 
2   

= − x 2 − 2.5x + 0.625 

Bending moment at C, i.e., x = 1.25, MC = −1.252 − 2.5 1.25 + 0.625 

= −4.0625 kN − m 

8. Calculate the shear force and bending moment for the beam subjected to a concentrated load 

of W as shown in the figure. Draw the shear force diagram (SFD) and bending moment 

diagram (BMD). 

 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Taking moment about B, MB = 0 , VA 

 
L = W  

 L 

2 

V  = 
W 

A 
2 

Sum of the vertical forces, V = 0, VA + VB = W 

Hence, V  = 
W 

B 
2 

Calculation of Shear force and bending moments: 



 

 

W 

Considering A as the origin, take a section 1-1 at a distance of x from A between A and C 

(0  x  L 
2
). 

 

Shear force at 1-1, Fx = VA = 
2 

 

Shear force at A, i.e., x = 0 F  = 
W 

A 
2 

Shear force just left of C, i.e., x = 0 i.e., x = 
L 

, F = 
W 

  

 

 

Bending moment at 1-1, 

 

 

M x = VA 

2 
LC 

2 

 x = 
W 

x 
2 

Bending moment at A, i.e., x = 0, M = 
Wx 

= 0 
A 

2 

Bending moment at C, i.e., x = 
L 

, M 
 

 

= 
W 

 
L 

= 
WL 

   

2 C 2 2 4 
 

 



 

 

2 

2 

2 

 
Take a section 2-2 at a distance of x from A between C and B 

 L 
 x  L 

 
. 

 

 

Shear force at 2-2, 

 

 

F = 
W 

x 
2 

   
  

− W = − 
W 

2 

Shear force at C 
 

x = 
L 

, F  = 
− W 

   C 
  2 

Shear force at B, (x = L), F  = 
− W 

B 
2 

Bending moment at 2-2, M = 
W 

x − 
 

− 
L  

x W  x   
2   

= 
Wx 

− Wx + 
WL 

2 2 

= − 
Wx 

+ 
WL 

2 2 

Bending moment at B, i.e., x = L, M = − 
Wl 

+ 
WL 

= 0 
B 2 2 

Bending moment at C, i.e., x = 
L 

, M = − 
W  L  

+ 
WL 

= 
WL 

2 
C    

2  2  2 4 

9. Draw the Shear force and bending moment diagram for a simply supported beam of length L 

carrying uniformly distribute load of intensity w per unit length over the entire span. 

 

Solution: 

Evaluation of support reactions: 

The simply supported beam with uniformly distributed load over the entire span is symmetrically 

loaded symmetric beam. Hence, reactions at both supports are equal. 

 

RA = RB 
= 

wL 

2 

Calculation of Shear force and bending moments: 

In a symmetric beam, we need only to analyze half of the beam for shear force and bending 

moment. The other half will just be the mirror-image of the first half. 



 

 

= 

 

 

 
Considering A as the origin, take a section 1-1 at a distance of x from A between A and C 

(0  x  L 
2
). 

 

Shear force at 1-1, Vx 

 

= VA 
− wx = 

wL 
− wx 

2 

 

Shear force at A, i.e., x = 0 F  = 
wl 

A 
2 

Shear force at C, i.e., F = 
wL 

− w  
L 

= 0 
  

C 
 

 

Bending moment at 1-1, 

2 

 
M x = VA 

2 

 
 x − 

 
 x  wL 

wx   2 2 

 
 x  wx 

2 
 

 

= 
wL 

x − 
2 

    

wx2 
 

 

2 

x − 



 

 

Bending moment at A, i.e., x = 0 M x = 0 

 L 2 
wL  L  

w 
2 

 
wL2 wL2 

Bending moment at C, M =    − 
     

= − 
   

C 2  2  2 4 8 

= 
wL2 

8 

Bending moment equation is a quadratic in form, hence the bending moment diagram will be 

parabolic between A and B. 

Due to symmetry, the bending moment and shear force for the other half at respective point of 

symmetry will be same as the first half AB. 

10. A simply supported beam shown in the figure carries two concentrated loads and a uniformly 

distribute load. Analyze the beam for shear force and bending moment, and draw the SFD 

and BMD. 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Taking moment about B, MB  = 0 , VA  8 = 25 6 + 15 4 + 7.5 4 2 

VA = 33.75kN 

Sum of the vertical forces, V = 0, 33.75 + VB = 25 + 15 + 7.5 4 
 

Hence, VB = 70 − 33.75 = 36.25kN 

Calculation of Shear force and bending moments: 

Considering A as the origin, take a section 1-1 at a distance of x from A between A and C 

(0  x  2). 

Shear force at 1-1, Fx = VA = 33.75 kN 

Shear force at A, i.e., x = 0 FA = 33.75kN 

Shear force just left of C, i.e., x = 2, FLC = 33.75kN 

Shear force at C, i.e., x = 2, FC = 33.75 − 25 = 8.75 kN 

Bending moment at 1-1, Mx  = VA  x = 33.75x 



 

 

 

Bending moment at C, i.e., x = 2, MC = 33.75  2 = 67.5 kN − m 

Take a section 2-2 at a distance of x from A between C and D (2  x  4). 
 

Shear force at 2-2, Fx = 33.75 − 25 = 8.75 kN 

Shear force at C, i.e., x = 2, FC = 8.75 kN 

Shear force just left of D, i.e., x = 4, FLD = 8.75kN 

Shear force at D, i.e., x = 4, FD = 8.75 −15 = −6.25kN 

Bending moment at 2-2, M x = 33.75x − 25(x − 2) 

M x = 8.75x + 50 

Bending moment at C, i.e., x = 4, MD = 8.75 4 + 50 = 85kN − m 
 

 



 

 

D 

Now, considering from the right side and taking B as the origin, take a section 3-3 at a distance 

of x from B between B and D (0  x  4). 

Shear force at 3-3, Fx = −36.25 + 7.5x 

Shear force at B, i.e., x = 0 FB = 36.25kN 

Shear force just right of D, i.e., at x = 4, Fx = −36.25 + 7.5  4 = −6.25 kN 

Shear force at D, i.e., x = 4, FD = −6.25 + 15 = 8.75kN 

 

Bending moment at 3-3, M = 36.25x − 
7.5 

x 2 = 36.25x − 3.75x 2 
x 

2 

Bending moment at D, i.e., x = 4, M = 36.25  4 − 3.75  42 = 85 kN − m 

 

11. Draw the shear force and bending moment diagram for the overhanging beam shown in the 

figure. 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Taking moment about A, M A = 0 , VD  4 = 20 5 + 50 2 + 20 21 

VD = 60kN 

Sum of the vertical forces, V = 0, VA + 60 = 20  2 + 50 + 20 
 

Hence, VA = 110 − 60 = 50kN 

Calculation of Shear force and bending moments: 

Considering A as the origin, take a section 1-1 at a distance of x from A between A and C 

(0  x  2). 

Shear force at 1-1, Fx = 50 − 20x 

Shear force at A, i.e., x = 0 FA = 50 kN 

Shear force just left of C, i.e., x = 2, FLC = 50 − 20  2 

FLC = 10 kN 

Shear force at C, i.e., x = 2, FC = 10 − 50 = −40kN 



 

 

 

Bending moment at 1-1, 
x2 

M x = VA  x − 20  
2 

= 50x − 10x 2 

Bending moment at C, i.e., x = 2, MC = 50  2 − 10  22 = 60 kN − m 

 

 

 

 

Now, considering from the right side and taking B as the origin, take a section 2-2 at a distance 

of x from B between B and D (0  x  4). 

Shear force at 2-2, Fx = 20 kN 

Shear force at B, i.e., x = 0 FB = 20 kN 



 

 

Shear force just right of D, i.e., at x = 1, FD = 20kN 

Shear force at D, i.e., x = 1, FD = 20 − 60 = −40 kN 

Bending moment at 2-2, M x = −20x 

Bending moment at D, i.e., x = 1, MB = 0 

Bending moment at D, i.e., MD = −201 = −20 kN − m 

Take a section 3-3 at a distance of x from B between D and C (1  x  3). 

Shear force at 3-3, Fx = 20 − 60 = −40 kN 

Shear force at D, i.e., x = 1, FD = −40 kN 

Bending moment at 3-3, Mx  = −20x + 60(x − 1) 

= 40x − 60 

Bending moment at C, i.e., x = 3, M x = 40  3 − 60 = 60 kN − m 

It is observed that bending moment changes sign between D and C. So, point of 

contraflexure exists between D and C. 

Equating bending moment equation to zero, we get 

40x − 60 = 0 

x = 1.5 m 

Point of contraflexure: 

A point of contraflexure is a point where the curvature of the beam changes signs. It is 

sometimes referred to as a point of inflexion. In other words, point of contraflexure is a point 

where bending moment changes its sign from positive to negative or from negative to positive 

through zero. This means, bending moment is zero at point of contraflexure. 

 

 

 

 



 

 

 

Columns and Struts 

• Any member subjected to axial compressive load is called a column or Strut. 

• A vertical member subjected to axial compressive load – COLUMN (Eg: Pillars 

of a building) 

• An inclined member subjected to axial compressive load - STRUT 

• A strut may also be a horizontal member 

• Load carrying capacity of a compression member depends not only on its cross 

sectional area, but also on its length and the manner in which the ends of a 

column are held. 

•  Equilibrium of a column – Stable, Unstable, Neutral. 

• Critical or Crippling or Buckling load – Load at which buckling starts 

• Column is said to have developed an elastic instability. 

Classification of Columns 

• According to nature of failure – short, medium and long columns 

• 1. Short column – whose length is so related to its c/s area that failure 
occurs mainly due to direct compressive stress only and the role of 
bending stress is negligible 

• 2. Medium Column - whose length is so related to its c/s area that failure 
occurs by a combination of direct compressive stress and bending stress 

• 3. Long Column - whose length is so related to its c/s area that failure 
occurs mainly due to bending stress and the role of direct compressive 
stress is negligible 

 

 



 

 

 

Euler’s Theory 

• Columns and struts which fail by buckling may be analyzed by Euler’s 
theory 

• Assumptions made 

 

 

 

 

 

 

 

 

 

 

Case (i) Both Ends Hinged 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Case (ii) One end fixed other free 

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



 

 

 
 

 
 

 

 

 

 

 

 

Case (iii) Fixed at both ends 

 

 

 



 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 



 

 

 

 

 

Case (iv) One end fixed, other hinged 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
 

  

 

 

 

 



 

 

Equivalent Length (l
e
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Limitations of Euler’s Formula 

Assumption – Struts are initially perfectly straight and the load is exactly 

axial. 

There is always some eccentricity and initial curvature present. 

In practice a strut suffers a deflection before the Crippling load. 
 

Critical stress (σ
c
) – average stress over the cross section 

 

• l/k is known as Slenderness Ratio 

 

Slenderness Ratio 

 

Slenderness ratio is the ratio of the length of a column and the radius of gyration of its cross section 

Slenderness Ratio = l/k 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

Rankine’s Formula OR Rankine-Gorden Formula 

• Euler’s formula is applicable to long columns only for which l/k ratio is 

larger than a particular value. 

• Also doesn’t take in to account the direct 

compressive stress. 

• Thus for columns of medium length it doesn’t provide 

accurate results. 

• Rankine forwarded an empirical relation 
 

 

 
 

 

  
 

 
 

 

 



 

 

 

 
A Factor of Safety may be considered for the value of σc in the above formula 

 

Rankine’s formula for columns with other end conditions 

 

 

 

 

 

 




