

PNS SCHOOL OF ENGG. & TECH., MARSHAGHAI

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING LESSON PLAN

BRANCH : CSE	SEMESTER : 3rd	NAME OF THE TEACHING FACULTY : MR. BISWARANJAN SWAIN
SUBJECT : Algorithms(CSEPC 209)	NO. OF DAYS PER WEEK CLASS	SEMESTER FROM DATE: 14.07.2025 TO 30.11.2025
WEEK	CLASS DAY	THEORY TOPICS
1ST	1 st	1. Introduction to Algorithms: Basics of C language.
	2 nd	Definition of algorithm,
	3 rd	Criteria of algorithms – Input/output, finiteness, definiteness,
	4 th	Effectiveness of Algorithm
2ND	1 st	writing an algorithm with pseudocode
	2 nd	algorithms and programs
	3 rd	Review of chapter
	4 th	Question discussion
3RD	1 st	2. Algorithmic Complexity: Concept of algorithmic complexity
	2 nd	space complexity, time complexity,
	3 rd	time complexity
	4 th	worst case, average case
4TH	1 st	average case and best case analysis,
	2 nd	Big-O notation
	3 rd	Finding the complexity of an algorithm
	4 th	Review of chapter
5TH	1 st	Question discussion
	2 nd	3.Recursive algorithms: Concept of iteration and recursion
	3 rd	examples of recursive algorithms
	4 th	Fibonacci series
6TH	1 st	Complexities of Fibonacci series
	2 nd	factorial, Tower-of-Hanoi problem
	3 rd	Tower-of-Hanoi problem
	4 th	Complexities of Factorial
7TH	1 st	Complexities of Tower-of Hanoi problem
	2 nd	conversion of recursive algorithm to iterative algorithm.
	3 rd	Review of chapter
	4 th	Question discussion

8 th	1 st	4. Algorithm Paradigms Greedy Approach
	2 nd	Examples of Greedy algorithm
	3 rd	Divide and Conquer
	4 th	Examples of Divide and Conquer
9 th	1 st	Branch and Bound
	2 nd	Examples of branch and bound
	3 rd	Dynamic Programming and Backtracking
	4 th	Examples of Dynamic programming
10 th	1 st	Review of chapter
	2 nd	Question discussion
	3 rd	5. Sorting: The sorting problem
	4 th	Bubble sort
11 th	1 st	Bubble sort Example
	2 nd	Selection sort
	3 rd	Insertion sort
	4 th	Mergesort
12 th	1 st	Quicksort
	2 nd	Heap sort
	3 rd	Radix sort
	4 th	Searching: Symbol Tables
13 th	1 st	Binary Search Trees
	2 nd	Balanced Search Trees
	3 rd	Hashing, Hash Tables.
	4 th	Review of chapter
14 th	1 st	6. Graphs: Definition of a directed and undirected graph
	2 nd	Paths, Cycles, spanning trees
	3 rd	Directed Acyclic Graphs.
	4 th	Topological Sorting
15 th	1 st	Minimum Spanning Tree algorithms
	2 nd	Shortest Path algorithms: Dijkstra's algorithm
	3 rd	Flow-based algorithms
	4 th	Review of chapter

Biswarajan Srinivasan

SIGNATURE OF H.O.D

Biswarajan Srinivasan

SIGNATURE OF LECTURER