

ENERGY SOURCES

1.1. Introduction to energy

The energy of a body is its capacity to do work. It is measured the total amount of work that the body can do. Energy is the primary and most universal measure of all kinds work by human beings and nature. Every thing what happens the world is the expression of flow of energy in one of its forms

1.2. Different forms of energy

The different forms of energy are:

1. Mechanical energy (kinetic and potential)

- 2. Thermal (or) Heat energy
- Chemical energy
- Electrical energy
- Nuclear energy
- Electromagnetic energy
- Gravitational energy
- The S.I unit of energy is Joule or KJ
- Classification of Energy Sources Energy sources can be classified on the basis of
 - Conventional and Non Conventional Energy sources.
 - Renewable and Non Renewable Energy sources.

Renewable Energy Resources:

Renewable energy sources also called non-conventional energy, are sources that are continuously replenished by natural processes. For example, solar energy, wind energy, bio-energy - bio-fuels grown sustainably, hydropower etc., are some of the examples of renewable energy sources. A renewable energy system converts the energy found in sunlight, wind, falling-water, sea-waves, geothermal heat, or biomass into a form, we can use such as heat or electricity. Most of the renewable energy comes either directly or indirectly from sun and wind and can never be exhausted, and therefore they are called renewable..

(a) Fossil fuel energy

Coal, petroleum, and natural gas are called Fossil fuel as these are formed by the decomposition of the remains of dead plants and animals buried under the earth for a long time. These are non-renewable sources of energy, which, if exhausted, can not be replenished in a short time. Their reserves are limited and are considered very precious. These should be used with care and caution to let them last long. These are also contributing to the global environmental pollution.

(i) Coal

India now ranks third amongst the coal-producing countries in the world. Coal is the most abundant fossil fuel in India till date and coal has been the mainstay of India's energy supply for many years. Production of coal has increased from about 71 MT (million tonnes) in the early 1970s to 407 MT in 2005-06 (MOC 2007). Indian coal is of poor quality and has high ash content. Since the advent of industrialization coal has been the most common source of energy. In the last three decades, the world switched over from coal to oil as a major source of energy because it is simpler and cleaner to obtain useful energy from oil. Coal is a complex mixture of compounds of carbon, hydrogen and oxygen. Small amounts of nitrogen and Sulphur compounds are also present in coal. It is mainly available in Bihar, West Bengal, Orissa and Madhya Pradesh. The big coal mines in our country are at Jharia and Bokaro in Bihar and at Raniganj in West Bengal. It is considered as the backbone of the energy sector for its use in industry, transportation and electric power generation.

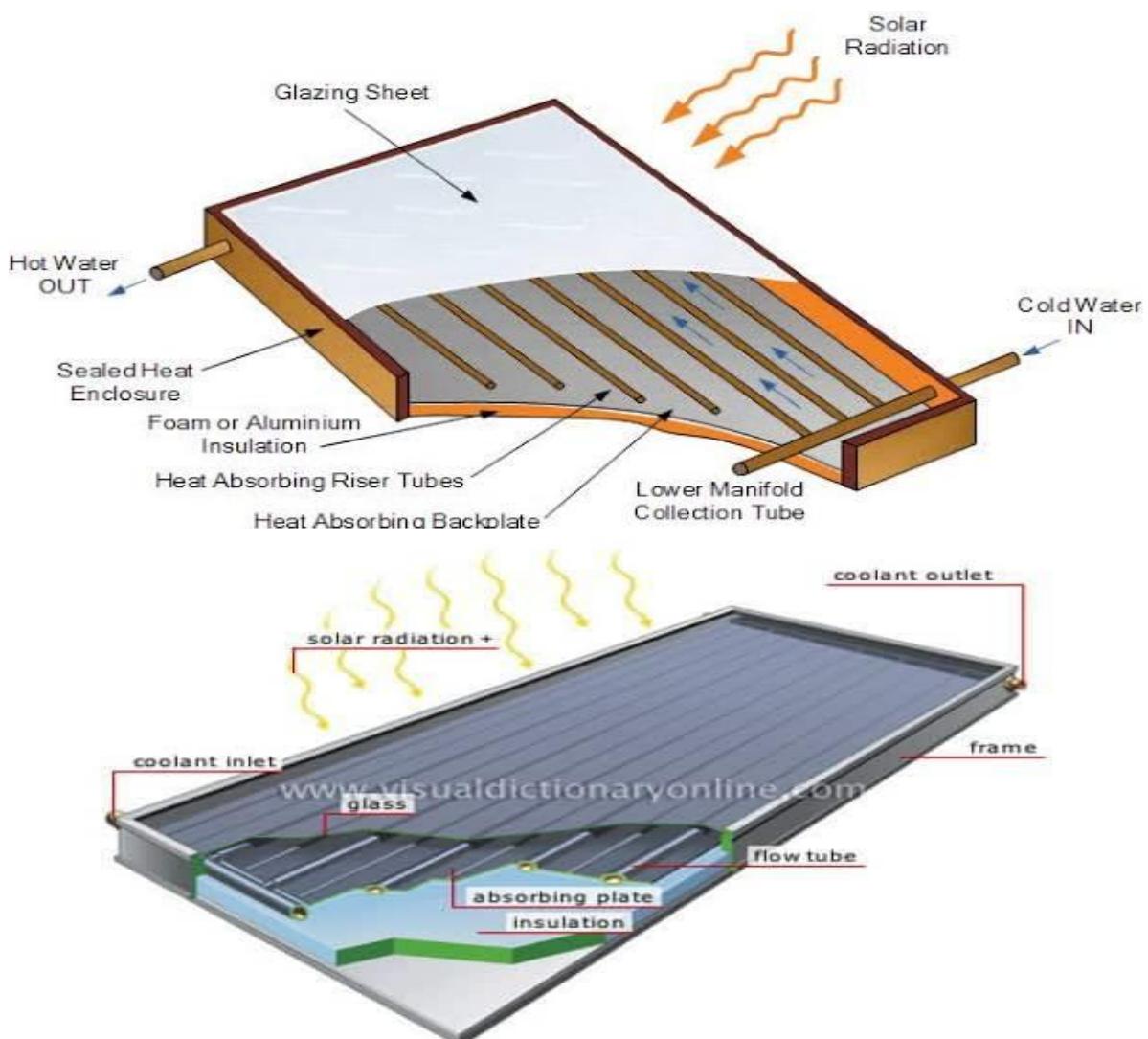
Natural gas

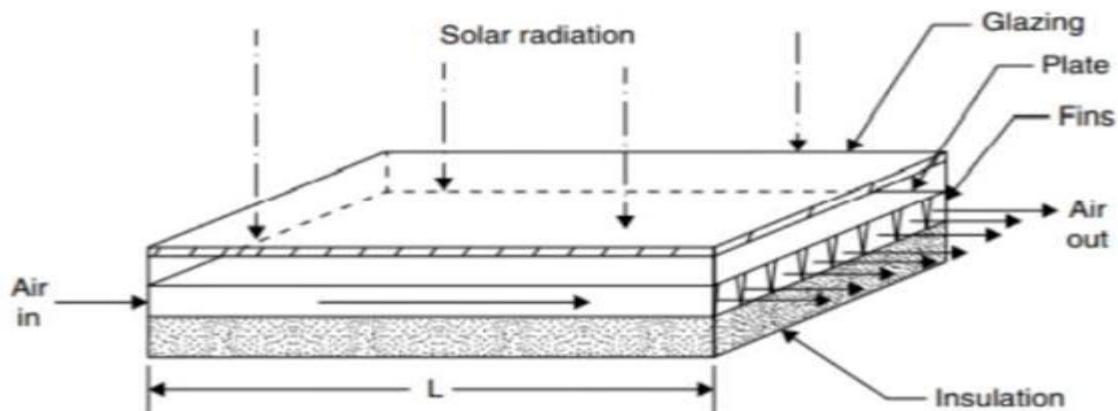
It consists about 95% Methane and rest ethane and propane. It occurs deep under the crust of the earth either alone or along with oil above the petroleum deposits. It is a product of petroleum mining. The gas is available in Tripura, Jaisalmer, off-shore areas of Bombay High and in the Krishna - Godavari delta. It is used as a domestic and industrial fuel. The natural gas is now also available as CNG (**Compressed Natural Gas**) a substitution of petrol in automobiles.

Gas is incompletely utilized at present and huge quantities are burnt off in the oil production process because of the non-availability of ready market. The reason may be the high transportation cost of the gas. To transport gas is costlier than transporting oil.

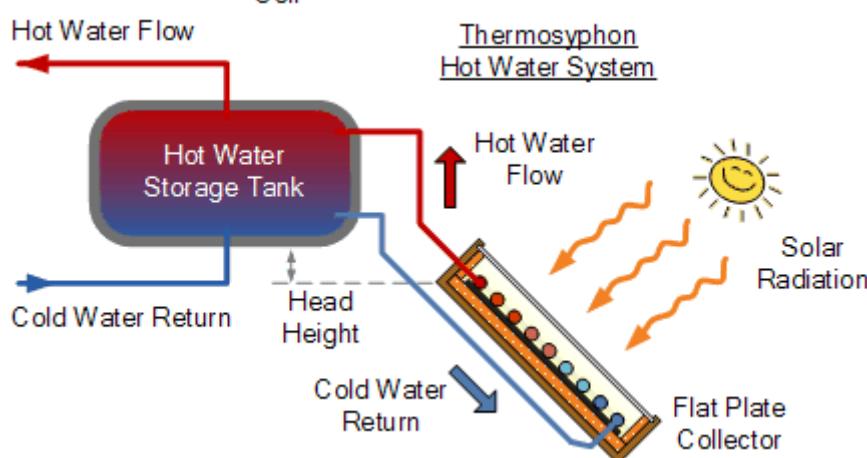
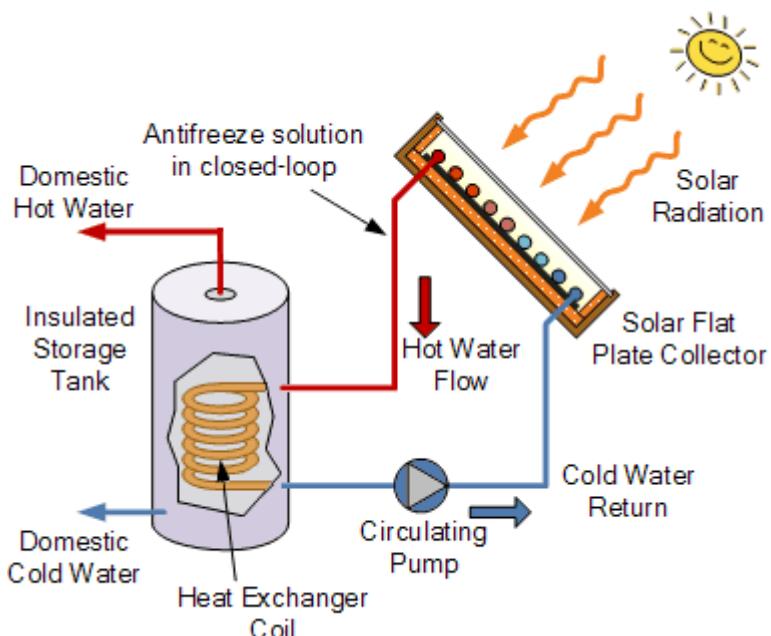
Solar energy

Solar energy can be a major source of power. Its potential is 178 billion


MW which is about 20,000 times the world's demand. Sun's energy can be


utilized as thermal and photovoltaic.

Brief history of solar energy (or) Importance of solar energy: Energy from the sun is called solar energy. The Sun's energy comes from nuclear fusion reaction that take place deep in the Sun. Hydrogen nucleus fuse into helium nucleus. The energy from these reactions flow out from the sun and escape into space.



Flat plate collectors

Flat plate collectors: an overview

Flat Plate Air Collectors

Flat plate collectors are a prevalent technology for harnessing solar energy and transforming it into thermal energy. They are widely employed in various applications, particularly in residential and commercial settings for heating water and spaces.

How they work

Flat plate collectors function by absorbing solar radiation and transferring the resulting heat to a fluid (typically water or an antifreeze mixture) circulating through the collector.

Here's a breakdown of the key components and their roles:

1. Absorber Plate: A dark-colored, flat metal plate (often copper or aluminum) that absorbs sunlight and converts it into heat.
2. Glazing: A transparent cover (glass or plastic) that allows sunlight to pass through while trapping heat and reducing heat loss from the absorber plate.
3. Heat Transfer Fluid: Circulates through tubes or passages attached to the absorber plate, absorbing the heat generated and transporting it for use or storage.
4. Insulation: Located at the back and sides of the collector to minimize heat loss to the surrounding environment.
5. Casing: A weather-tight container that encloses and protects the other components.

Applications

Flat plate collectors are particularly well-suited for a variety of thermal applications, including:

- Domestic hot water systems: Providing hot water for everyday use in homes.
- Space heating: Supplementing or replacing conventional heating systems in buildings.
- Pool heating: Unglazed collectors, which lack a transparent cover and have increased heat loss, are often used for this purpose in warmer climates.
- Industrial process heating: Preheating fluids or providing heat for various industrial processes.

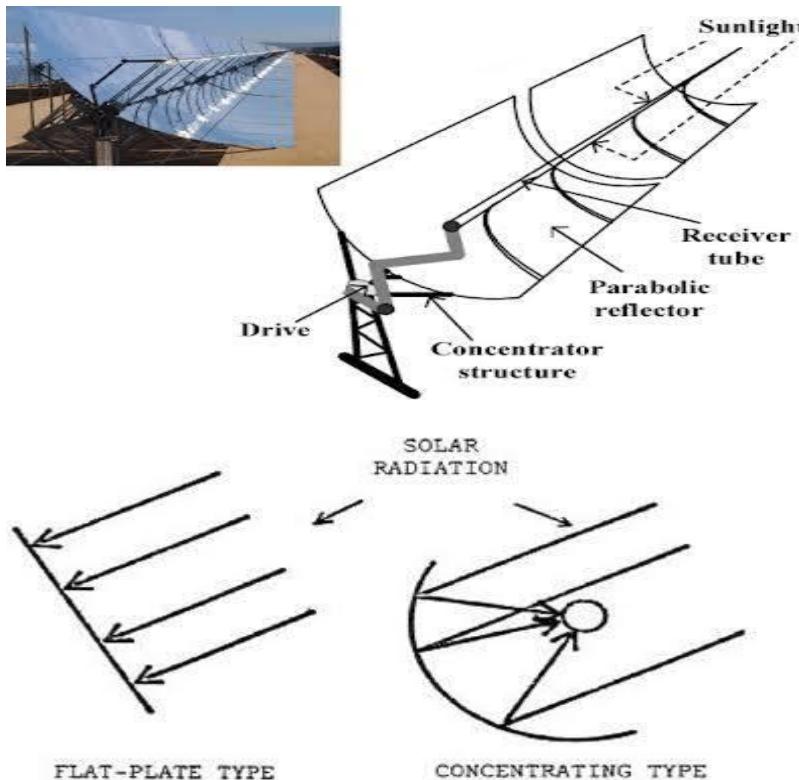
Advantages

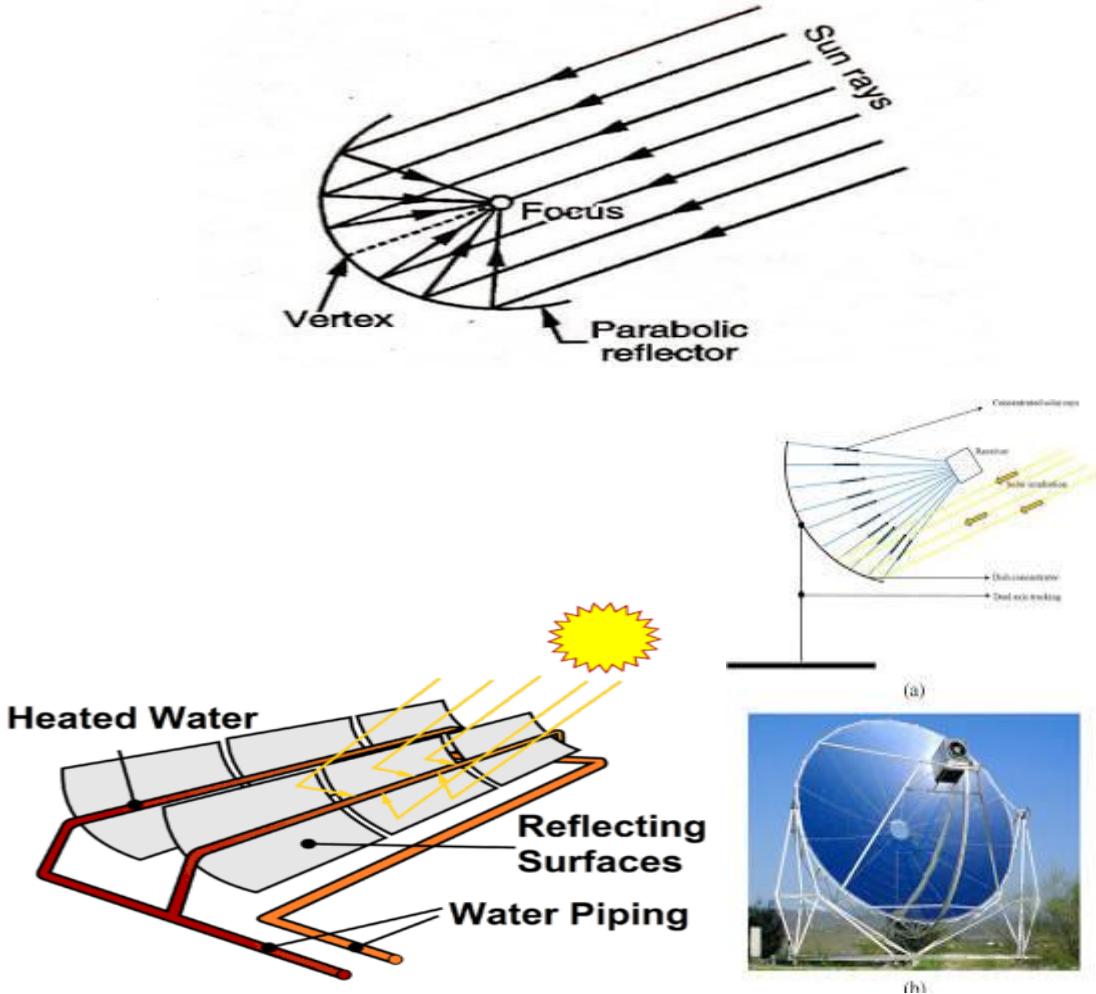
Flat plate collectors offer several benefits:

- Cost-effectiveness: Generally cheaper to purchase and install compared to some other solar collector types, such as evacuated tube collectors.
- Simplicity: Their straightforward design and ease of installation and maintenance contribute to their appeal.
- Durability: Glazed collectors, for example, typically use low-iron, tempered glass that can withstand significant impact, like hail.
- Versatility: They can be installed on roofs, walls, or the ground and integrated with existing heating systems.
- Environmental benefits: Utilizing renewable solar energy reduces reliance on fossil fuels and contributes to lower greenhouse gas emissions.

Limitations

However, flat plate collectors also have certain drawbacks:


- Lower Efficiency: Compared to evacuated tube collectors, flat plate collectors may have lower efficiency and higher heat loss, particularly at higher temperatures or in colder climates.
- Limited Temperature Range: They are generally best suited for applications requiring temperatures below 100°C (212°F).
- Susceptibility to Weather Conditions: Efficiency can be impacted by factors like cloudy weather and strong winds.


Comparison with evacuated tube collectors (ETCs)

While both flat plate collectors and ETCs capture solar energy for heating, they differ in design and performance. ETCs typically consist of parallel glass tubes with a vacuum between the outer and inner tubes, which significantly reduces heat loss and makes them more efficient, especially in colder climates. However, ETCs are generally more expensive and fragile than flat plate collectors.

Ultimately, the optimal choice between flat plate and evacuated tube collectors depends on specific factors such as climate, desired temperature range, budget, and system design requirements.

Concentrating collectors: harnessing the sun's power

Concentrating solar collectors, also known as concentrating solar power (CSP) systems or solar concentrators, use mirrors or lenses to focus sunlight onto a small area called a receiver. This concentrated sunlight increases the solar energy received, which is then converted into thermal energy or electricity.

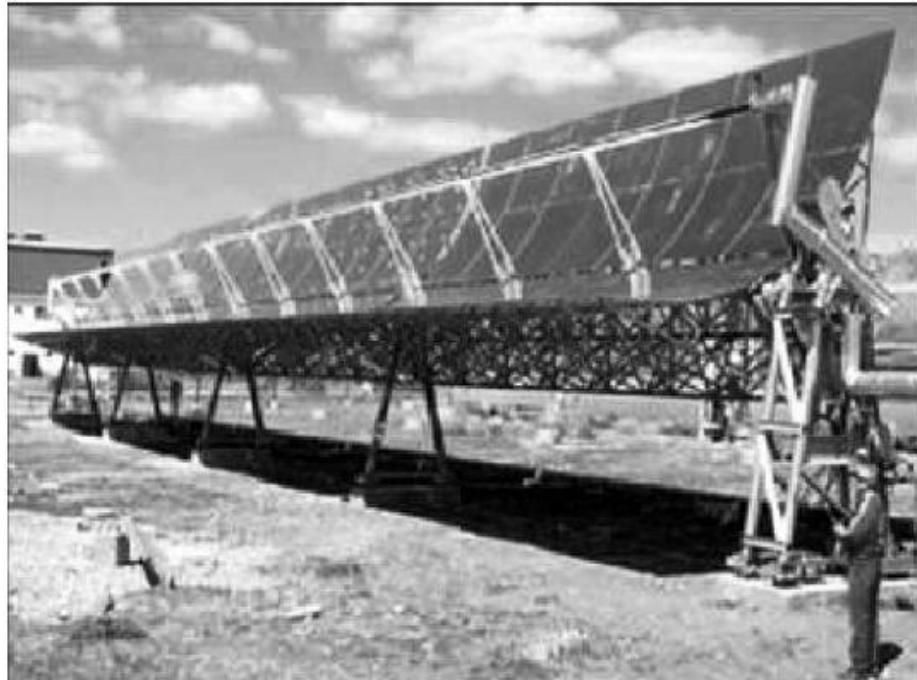
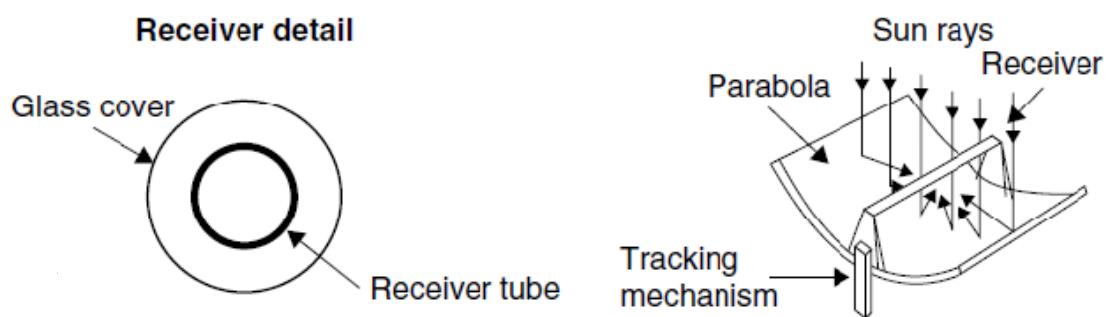
Concentrating solar collectors utilize the direct normal irradiance (DNI) of sunlight, meaning the light that travels directly from the sun in a straight line. The collectors are mounted on sun-tracking systems that follow the sun's path to maintain optimal alignment and maximize energy capture.

There are several types of concentrating solar collectors, each with a unique design and method for concentrating sunlight:

- **Parabolic Trough Systems:** These systems use long parabolic mirrors to focus sunlight onto a receiver tube located along the mirror's focal line. A fluid circulating in the tube is heated to generate steam, which can then power turbines to produce electricity.
- **Linear Fresnel Reflector (LFR) Systems:** LFR systems use multiple rows of flat or slightly curved mirrors to concentrate sunlight onto a receiver positioned above the mirror field. This design can be more cost-effective as the absorber is stationary.

- Dish/Engine Systems: These systems use a parabolic dish concentrator to focus sunlight onto a receiver placed at the focal point. The concentrated heat can power a Stirling engine coupled to a generator to produce electricity.
- Power Tower Systems: Power tower systems utilize a field of mirrors called heliostats to reflect sunlight onto a central receiver at the top of a tall tower. The heat collected in the receiver is used to generate steam, which then drives turbines for electricity production.

Advantages and disadvantages of concentrating collectors

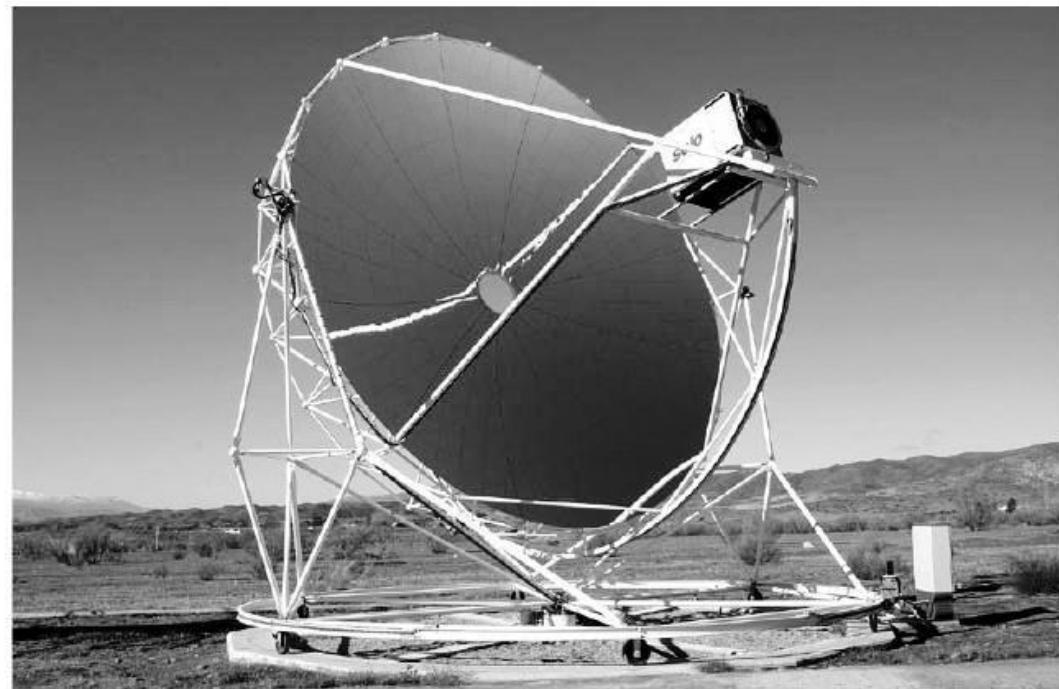
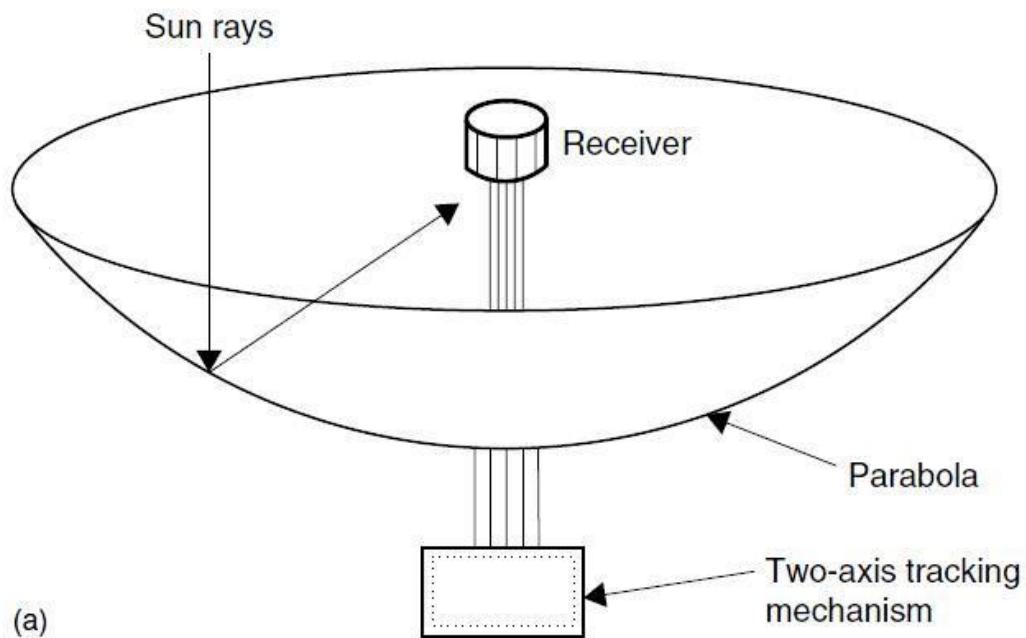


Advantages:

- Achieve higher temperatures compared to flat plate collectors, leading to higher thermodynamic efficiency.
- Offer better thermal efficiency due to the small heat loss area relative to the receiver area.
- Require less material and are structurally simpler than flat plate collectors, potentially leading to lower cost per unit area.
- Can store thermal energy for later use, providing dispatchable power even after sunset or during cloudy periods.
- Suitable for large-scale applications such as industrial process heat, absorption chilling, and electricity generation.

Disadvantages:

- Require sun-tracking systems to maintain optimal alignment with the sun, increasing complexity and potentially costs.
- More sensitive to diffuse radiation and work best in areas with high direct solar radiation.
- Reflective surfaces may require periodic cleaning and refurbishment to maintain their effectiveness.

In essence, concentrating solar collectors represent an important technology in the transition towards a sustainable energy future, offering a way to harness the sun's power for a wide range of applications, especially those requiring higher temperatures and large-scale power generation.

(a)

(b)

FIGURE 3.14 Photos of actual parabolic trough collectors. (a) The EuroTrough (from www.sbp.de/en/html/projects/detail.html?id=1043). (b) An Industrial Solar Technology collector.

FIGURE 3.20 Parabolic dish collector. (a) Schematic diagram. (b) Photo of a Eurodish collector (from www.psa.es/webeng/installaciones/discos.html).

Solar water heaters utilize solar energy to heat water, offering a sustainable and cost-effective solution for domestic, commercial, and industrial needs. They can significantly reduce electricity consumption and associated costs. Key components include a collector (flat plate or evacuated tube), a storage tank, and a piping system.

Types of Solar Water Heaters:

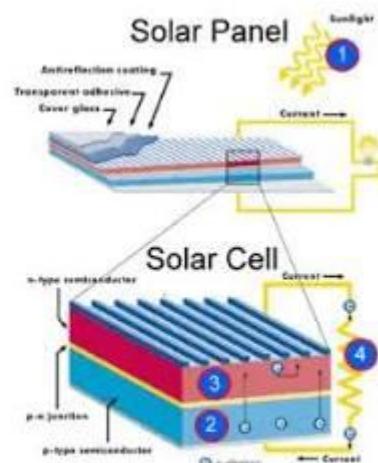
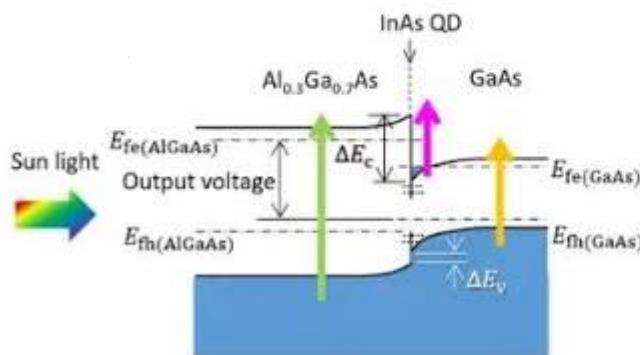
- **Flat Plate Collectors:**

These consist of a blackened metallic absorber plate with channels or tubes for water flow, enclosed in an insulated box with a glass cover.

- **Evacuated Tube Collectors:**

These use a series of glass tubes, each containing an absorber plate, to heat the water.

Working Principle:



1. **Solar Radiation Absorption:** Solar radiation is absorbed by the collector, heating the water inside.
2. **Heat Transfer:** The heat is transferred to the water through conduction in the collector.
3. **Water Circulation:** Water circulates between the collector and the storage tank, either naturally (thermosiphon) or with the aid of a pump.
4. **Hot Water Storage:** The heated water is stored in the insulated tank for later use.

Advantages:

- **Renewable Energy Source:** Solar energy is free and abundant.
- **Cost Savings:** Reduced electricity consumption leads to lower energy bills.
- **Environmental Benefits:** Reduced carbon emissions and reliance on fossil fuels.

Solar cells,

What is a Solar Cell?

Electrical 4 U

also known as photovoltaic cells (PV cells), convert sunlight directly into electricity through the photovoltaic effect. They are the fundamental components of photovoltaic systems, which harness solar energy and reduce reliance on other energy sources.

Types of solar cells

Solar cells are classified into three main generations based on the materials and manufacturing techniques used.

- First Generation (Crystalline Silicon):
- Monocrystalline: Made from single silicon crystals, they offer the highest efficiency (up to 24%) but are the most expensive. They are widely used in residential applications and comprise over 80% of all solar panels sold worldwide.
- Polycrystalline: Made from multiple interlocking silicon crystals, they are cheaper but less efficient (around 10-13%).
- Second Generation (Thin-Film):
- Amorphous Silicon (A-Si): Non-crystalline, amorphous silicon is deposited in thin films at low temperatures. They are the cheapest but also the least efficient (5-7%).
- Cadmium Telluride (CdTe): A thin-film technology with a band gap of 1.5 eV, offering high optical absorption and chemical stability, making them cost-effective compared to other thin films.
- Copper Indium Diselenide (CIS) or Copper Indium Gallium Selenide (CIGS): These thin films show good potential for future development.

Working principle

Solar cells operate by harnessing the energy of light through a three-step process.

- Light Absorption: Sunlight, composed of photons, strikes the cell's surface and is absorbed by the semiconductor material, typically silicon.
- Electron-Hole Pair Creation: The absorbed photons transfer their energy to electrons in the semiconductor, causing them to break free from their atoms, creating electron-hole pairs.
- Charge Separation and Flow: The semiconductor material is treated to create a p-n junction, establishing an electric field that separates the electron-hole pairs. The electrons flow into the n-type layer and are directed through an external circuit as electric current, eventually returning to the p-type layer. This process is known as the photoelectric effect.

Applications

Solar cells have a wide range of applications, including:

- Residential and Commercial Power: Powering homes, buildings, and remote facilities.
- Remote Area Applications: Especially useful for villages, irrigation, water pumping, telecommunications systems, navigation aids, and monitoring stations not connected to energy grids.
- Space Applications: Providing reliable electrical power to spacecraft and satellites.
- Consumer Products: Powering devices such as calculators and watches.
 - Lighting: Providing lighting for homes, schools, and streets.

Solar Distillation

Solar Distillation is a technology for producing potable water from brackish and underground water of low-quality by using renewable resource (i.e. solar energy) to evaporate water and collect its condensate within the same closed system known as Solar Still. It can reduce water-scarcity problems together with other water purification technologies for the Earth's population. It involves zero maintenance cost and no energy cost as it involves only solar energy which is free of cost.

Wind energy, also known as wind power, is the process of using wind turbines to convert the kinetic energy of wind into mechanical power, which can then be used to generate electricity.

wind energy

1. Wind causes turbine blades to spin: The wind's kinetic energy rotates the blades of a wind turbine.
2. Rotor hub and shafts turn: The spinning blades are attached to a rotor hub, which turns a low-speed shaft.
3. Gearbox increases speed: This low-speed shaft connects to a gearbox, which increases the rotational speed.

4. Generator produces electricity: The high-speed shaft from the gearbox then connects to an electrical generator, converting the mechanical energy into electricity.

Benefits

- Renewable and Clean: Wind is a naturally occurring and inexhaustible resource that doesn't produce greenhouse gases during operation.
- Low Operating Cost: Once a wind turbine is installed, the fuel (wind) is free, making operating costs relatively low.
- Space Efficient: Wind turbines can be spread across fields and the space underneath can still be used for other purposes, like farming.
- Economic Growth: Investment in wind energy promotes local jobs and relies on a local resource.
- Reduced Water Usage: Wind power generation uses significantly less water compared to traditional power plants that rely on fossil fuels.
- Rural Applications: Wind energy can be readily integrated into rural or remote areas that often have strong wind resources.

Applications of wind energy

Wind energy has been used for various purposes throughout history, including:

- Grinding grain
- Pumping water
- Powering ships (via sails)

Tidal energy

Tidal energy is a renewable energy source derived from the natural rise and fall of ocean tides. It harnesses the kinetic energy of tidal currents or the potential energy of tidal ranges (differences in water level between high and low tides) to generate electricity. Tidal energy is predictable and reliable, offering a consistent power source that can be harnessed using various technologies like tidal barrages, tidal stream generators, and lagoons.

Here's a more detailed explanation:

How it works:

- **Tidal Barrages:**

These are essentially dams built across estuaries or bays. When the tide comes in, water is impounded behind the dam. As the tide recedes, the water is released through turbines, generating electricity.

- **Tidal Stream Generators:**

These devices are similar to underwater wind turbines. They are placed in areas with strong tidal currents and use the flow of water to turn their blades, which are connected to a generator.

- **Tidal Lagoons:**

These are enclosed coastal areas similar to barrages, but they enclose a larger area and are not designed to span an entire river or estuary.

Key characteristics of tidal energy:

- **Renewable:**

Tides are a natural and virtually inexhaustible source of energy.

- **Predictable:**

Tides follow predictable patterns, making tidal energy a reliable power source.

- **Clean energy:**

Tidal energy generation does not produce greenhouse gas emissions or air pollutants.

- **Limited locations:**

Tidal energy can only be harnessed in coastal areas with significant tidal ranges.

- **Cost:**

The initial cost of building tidal power plants can be high, but the long-term operational costs are relatively low.

Examples of tidal energy projects:

- **La Rance Tidal Power Plant (France):** One of the oldest and largest tidal power plants, with a capacity of 240MW.

- **Sihwa Lake Tidal Power Station (South Korea):** The world's largest tidal power plant, with an output capacity of 254MW.

In conclusion, tidal energy is a promising renewable energy source with the potential to contribute significantly to global electricity production. While there are challenges related to cost and location, advancements in technology are making tidal energy a more viable and sustainable option.

Ocean Thermal Energy Conversion (OTEC)

Ocean Thermal Energy Conversion (OTEC) is a technology that generates electricity by harnessing the temperature differences between warm surface waters and cold deep waters of the ocean. This temperature differential, primarily found in tropical regions, drives a heat engine to produce usable energy. OTEC plants can potentially provide a continuous, renewable energy source, and can also be used for other applications like desalination.

How OTEC Works:

OTEC systems utilize the temperature difference between warm surface seawater and cold deep seawater to generate electricity. There are two main types of OTEC systems:

- **Closed-Cycle OTEC:**

This system uses a working fluid, like ammonia, that vaporizes at a relatively low temperature when heated by warm surface water. The vapor then drives a turbine connected to a generator, producing electricity. The cold deep seawater is used to condense the vapor back into a liquid, which is then recycled back into the heat exchanger.

- **Open-Cycle OTEC:**

PNS SCHOOL OF ENGINEERING & TECHNOLOGY ,KENDRAPARA,ODISHA

This system directly uses warm surface seawater to produce steam in a vacuum chamber. The steam then drives a turbine. The steam is then condensed back into water using cold deep seawater.

Benefits of OTEC:

- **Renewable Energy:**

OTEC utilizes a naturally replenishing resource, making it a sustainable energy source.

- **Continuous Power:**

Unlike solar and wind power, OTEC can operate 24/7, providing a reliable baseload power supply.

- **Desalination:**

OTEC systems can also be used to produce freshwater by condensing the steam generated in the process.

- **Aquaculture:**

The nutrient-rich cold water pumped from the depths can be used for aquaculture, supporting the growth of various marine species.

Challenges of OTEC:

- **High Costs:**

OTEC plants can require significant upfront investment due to the specialized infrastructure and technology involved.

- **Low Efficiency:**

The temperature differences in the ocean are relatively small, resulting in lower overall energy conversion efficiency compared to other power generation methods.

- **Environmental Impacts:**

Potential impacts on marine ecosystems, such as the disturbance of thermal plumes and potential harm to marine life, need to be carefully assessed and mitigated.

Geothermal energy

Geothermal energy is heat derived from the Earth's interior. This heat, a renewable energy source, can be harnessed for various uses, including electricity generation and heating. It's a sustainable resource due to the Earth's continuous heat production from radioactive decay and the planet's formation.

Geothermal energy is essentially the heat within the Earth's crust. This heat originates from two primary sources: the Earth's formation and the ongoing decay of radioactive elements within the planet. The Earth's core is extremely hot, and this heat gradually moves outward through the mantle and crust.

How is it harnessed?

Geothermal resources vary in temperature and depth. Some are found naturally as hot springs, geysers, or volcanoes, while others require drilling to access hot water or steam trapped underground.

Types of geothermal resources:

- **Hydrothermal resources:**

These are reservoirs of hot water and/or steam that can be accessed through wells.

- **Enhanced Geothermal Systems (EGS):**

These involve creating artificial reservoirs by fracturing hot, dry rock and injecting water to extract heat.

- **Geopressed resources:**

These contain hot water under high pressure, along with dissolved methane gas.

How is it used?

- **Electricity generation:**

Steam from geothermal reservoirs can be used to drive turbines and generate electricity.

- **Direct heating:**

Geothermal heat can be used to heat buildings, greenhouses, aquaculture farms, and industrial processes.

- **Geothermal heat pumps:**

These systems use the relatively constant temperature of the shallow ground to heat and cool buildings.

Benefits of geothermal energy:

- **Renewable:** It's a sustainable energy source because the Earth's heat is constantly replenished.
- **Clean:** Geothermal power plants typically have low emissions compared to fossil fuel plants.
- **Reliable:** Geothermal energy is available 24/7, unlike solar or wind power.
- **Locally available:** Geothermal resources are found in many locations around the world.

BIOMASS

Biogas is a renewable energy source produced by the breakdown of organic matter through anaerobic digestion, a process where microorganisms decompose organic material in the absence of oxygen. This process primarily yields methane and carbon dioxide, and sometimes other gases like hydrogen sulfide and water vapor. Biogas can be used as a fuel for heating, cooking, and electricity generation, and can also be upgraded to biomethane for use in vehicles and other applications.

Here's a more detailed explanation:

Production:

- **Anaerobic Digestion:**

Biogas is produced when organic matter is broken down by microorganisms in an oxygen-free environment.

- **Organic Matter:**

Common sources of organic matter for biogas production include agricultural waste (manure, crop residues), food waste, sewage sludge, and even certain types of algae.

- **Microorganisms:**

These microorganisms, often called methanogens, are the key players in the process, converting the organic matter into biogas.

Composition:

- **Methane (CH₄):** This is the primary combustible component of biogas, making it a valuable fuel.

- **Carbon Dioxide (CO₂):** A significant component of biogas, but it is not flammable.

- **Other Gases:** Biogas may also contain small amounts of hydrogen sulfide (H₂S), water vapor, and other gases.

Uses:

- **Heating and Cooking:**

Biogas can be burned to provide heat for various applications, including cooking and space heating.

- **Electricity Generation:**

Biogas can be used in gas engines to generate electricity.

- **Transportation Fuel:**

Biogas can be upgraded to biomethane, which can be used as a fuel for vehicles.

- **Fertilizer:**

The digestate, the remaining material after biogas production, is a nutrient-rich fertilizer that can be used in agriculture.

Benefits:

- **Renewable Energy Source:**

Biogas is a renewable resource, as it is produced from organic matter that can be replenished.

- **Waste Management:**

Biogas production can help manage organic waste, reducing landfill volume and potential methane emissions from landfills.

- **Reduced Greenhouse Gas Emissions:**

When biogas is used as a fuel, it can reduce reliance on fossil fuels and contribute to lower greenhouse gas emissions.

- **Local Resource:**

Biogas production can be localized, providing energy independence and economic benefits for communities.

Biomass

Biomass energy is a renewable energy source derived from organic matter, including plant and animal material, that can be converted into usable energy like heat, electricity, or biofuels. It's considered renewable because the organic matter can be replenished, unlike fossil fuels which are finite.

What is Biomass?

Biomass encompasses a wide range of organic materials, including:

- **Plant matter:** Trees, crops, agricultural residues (like corn stalks, sugarcane bagasse, rice husks), and forestry residues.
- **Animal waste:** Manure from farms.

- **Municipal solid waste:** Paper, wood, and other biodegradable materials.

How is Biomass Energy Produced?

1. **1. Direct Combustion:**

Biomass can be burned directly to produce heat, which can be used for heating or to generate steam to drive turbines for electricity production.

2. **2. Biofuel Production:**

Biomass can be converted into biofuels like bioethanol and biodiesel through processes like fermentation and transesterification.

3. **3. Anaerobic Digestion:**

Organic waste, including animal manure and food waste, can be broken down by bacteria in the absence of oxygen to produce biogas, which can be burned for energy.

Advantages of Biomass Energy:

- **Renewable:**

Biomass is a renewable resource, unlike fossil fuels, as it can be replenished through natural processes.

- **Carbon Neutral:**

While biomass combustion releases carbon dioxide, it's considered carbon neutral because the plants that form biomass absorb the same amount of carbon dioxide during their growth, creating a closed carbon cycle.

- **Waste Reduction:**

Biomass energy can utilize waste materials, contributing to waste management and reducing landfill volume.

- **Energy Independence:**

Biomass can be produced locally, reducing reliance on imported fossil fuels.

Disadvantages of Biomass Energy:

- **Land Use:** Large-scale biomass production can compete with food production for land.
- **Emissions:** While considered carbon neutral, biomass combustion can still produce some emissions like particulate matter and nitrogen oxides.
- **Efficiency:** The efficiency of converting biomass to energy can vary depending on the technology and the type of biomass used.

Biomass Energy in India:

- India has a program promoting biomass power and cogeneration since the 1990s [according to the ministry of new and renewable energy](#).
- The ministry of new and renewable energy (MNRE) is implementing programs to promote the use of biomass for power generation, particularly in sugar mills and other industries.
- India is also exploring mandatory blending of compressed biogas in the coming years, with plans to increase the percentage of biogas used in the energy mix [says the IEA – International Energy Agency](#).

Biodiesel

Biodiesel is a renewable, biodegradable fuel made from vegetable oils, animal fats, or recycled restaurant grease. It can be used in diesel engines and is considered a cleaner-burning alternative to petroleum diesel.

Here's a more detailed look at biodiesel:

- **Production:**

Biodiesel is produced through a process called transesterification, where fats and oils react with an alcohol (like methanol or ethanol) in the presence of a catalyst. This process separates the glycerin from the fatty acid methyl esters (biodiesel).

- **Feedstocks:**

Biodiesel can be made from a variety of sources, including:

- **Vegetable oils:** Soybean oil, rapeseed oil, and palm oil are commonly used.
- **Animal fats:** Tallow, lard, and poultry fat can be used.
- **Recycled grease:** Waste cooking oil from restaurants and other food service establishments.
- **Properties:**

Biodiesel has properties similar to petroleum diesel, allowing it to be used in most diesel engines with little or no modification.

- **Benefits:**

- **Renewable:** Biodiesel is produced from sustainable resources, unlike fossil fuels.
- **Biodegradable:** It breaks down naturally in the environment.
- **Reduced emissions:** Biodiesel generally produces lower levels of harmful emissions compared to petroleum diesel, especially in terms of particulate matter and sulfur oxides.
- **Improved lubricity:** Biodiesel has better lubricating properties than petroleum diesel, which can help reduce engine wear.

- **Challenges:**

- **Cost:** The cost of biodiesel production can be higher than petroleum diesel, particularly if using more expensive feedstocks.
- **Feedstock availability:** Ensuring a consistent and sustainable supply of feedstock can be a challenge.
- **Cold weather performance:** Biodiesel can be more susceptible to gelling in cold temperatures, although this can be mitigated by using cold flow improvers or blending with petroleum diesel.

- **In India:**

India is promoting the use of biodiesel, with plans to blend it with petroleum diesel to reduce reliance on fossil fuels. The Ministry of Petroleum and Natural Gas has notified a national policy on biofuels, setting targets for biodiesel blending. Used cooking oil is being promoted as a feedstock for biodiesel production in India, according to the Ministry of Petroleum and Natural Gas.

Hydraulic energy

PNS SCHOOL OF ENGINEERING & TECHNOLOGY ,KENDRAPARA,ODISHA

Hydraulic energy, also known as hydropower or water power, is the energy derived from the force of moving water. It's a renewable energy source that utilizes the potential or kinetic energy of water to generate electricity or power machines. This is typically achieved by channeling water through turbines, which then drive generators to produce electricity.

Here's a more detailed explanation:

1. Source of Energy:

- Hydraulic energy relies on the natural water cycle, where water moves from higher to lower elevations due to gravity, gaining kinetic energy as it flows.
- This kinetic energy, or the potential energy of water stored at a height (like in a dam), is then harnessed.

2. How it's Converted:

- **Turbines:**

Water is directed through turbines, which have blades that spin when hit by the water flow.

- **Generators:**

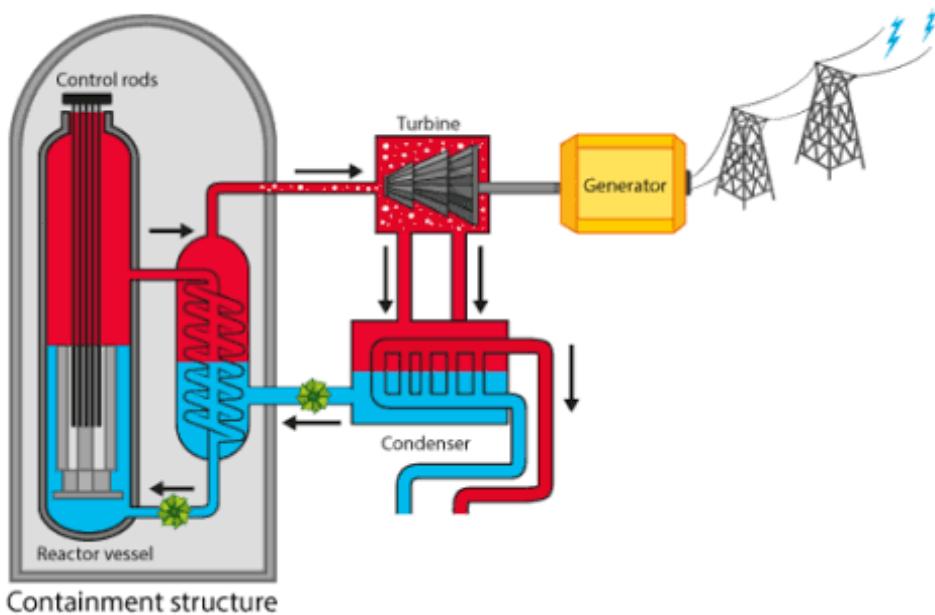
The spinning turbine is connected to a generator, which converts the mechanical energy of the turbine into electrical energy.

3. Types of Hydraulic Energy:

- **Hydropower Plants:** These facilities use dams to create reservoirs and control water flow to generate electricity.
- **Run-of-River Hydropower:** These facilities divert a portion of a river's flow through a powerhouse without creating a large reservoir.
- **Tidal Power:** Harnessing the energy of tides.
- **Wave Power:** Utilizing the energy of ocean waves.

4. Advantages:

- **Renewable:** The water cycle constantly replenishes the water supply.
- **Clean Energy:** Hydropower produces very little greenhouse gas emissions during operation.
- **Reliable:** Hydropower plants can adjust their output to meet changing electricity demands.
- **Mature Technology:** Hydropower is a well-established and widely used technology.


5. Examples:

- The Hoover Dam in the United States is a prominent example of a large-scale hydropower facility.
- Many smaller-scale hydropower facilities are used in various locations, including water treatment plants and irrigation systems.

Nuclear Energy;

Nuclear energy: a comprehensive overview

NUCLEAR ENERGY

© Byjus.com

Nuclear energy is a powerful and low-carbon energy source derived from the splitting of atoms, a process known as nuclear fission. This energy is harnessed within nuclear power plants to generate electricity, contributing significantly to global energy production, [according to the World Nuclear Association](#).

How nuclear energy works

- Nuclear Fission: The process begins with the splitting of heavy atomic nuclei, primarily uranium-235, into smaller, lighter nuclei.
- Heat Generation: This fission process releases a tremendous amount of energy in the form of heat.
- Steam Production: The heat is used to boil water, producing high-pressure steam.
- Electricity Generation: The steam drives turbines connected to generators, which then produce electricity.
- Chain Reaction Control: Nuclear power plant reactors are designed to control the chain reaction by absorbing excess neutrons, ensuring a sustained and safe energy output.

Advantages of nuclear energy

- Low-carbon emissions: Nuclear power plants do not release greenhouse gases during operation, making them a crucial tool in mitigating climate change, [says the IAEA](#).
- High power output: Nuclear power plants can generate a large amount of electricity from a small amount of fuel, providing a reliable source of baseload power for the grid.

- Reliability: Nuclear power plants can operate continuously for extended periods, unlike intermittent renewable sources like solar and wind.
- Small land footprint: Nuclear power plants require less physical space compared to other clean energy sources like solar or wind farms.
- Enhanced energy security: Nuclear power can help countries reduce their reliance on imported fossil fuels, contributing to greater energy independence.

Challenges and disadvantages of nuclear energy

- Radioactive waste: Nuclear power plants produce radioactive waste, which is dangerous and requires careful management and disposal, typically in deep underground repositories, [according to the U.S. Energy Information Administration \(EIA\)](#).
- High upfront costs: Building nuclear power plants is extremely expensive and requires substantial capital investment and long construction timelines.
- Safety concerns: The potential for nuclear accidents, though rare, remains a significant concern, as demonstrated by events like Chernobyl and Fukushima.
- Security risks: Nuclear power plants and waste facilities are potential targets for terrorist attacks, requiring stringent security measures, [says the IAEA](#).
- Nuclear proliferation: The technology used in nuclear power can also be used to create nuclear weapons, posing a proliferation risk.

Nuclear energy in India

India has a largely indigenous nuclear power program with ambitious plans to expand its nuclear energy capacity significantly.

- Current Status: India currently has 25 operational nuclear reactors with a combined installed capacity of 8,880 MW, contributing about 3% of the country's electricity generation.
- Future Plans: The Indian government aims to achieve 100 GW of nuclear power capacity by 2047, recognizing the importance of nuclear energy in meeting its clean energy and economic development goals.
- Thorium-based fuel cycle: India is actively pursuing the development of a thorium-based fuel cycle to exploit its abundant thorium reserves and achieve greater energy independence, [according to the World Nuclear Association](#).
- Small Modular Reactors (SMRs): India is investing in the research and development of SMRs, which offer potential for flexible deployment and could play a crucial role in diversifying the energy mix and supporting decentralized power generation, particularly in remote areas.

- Fuel cells are electrochemical devices that convert chemical energy into electrical energy, typically using hydrogen as fuel and oxygen as an oxidant. They are similar to batteries in that they produce electricity through chemical reactions, but unlike batteries, fuel cells can continuously generate power as long as a fuel source is provided.

Here's a more detailed explanation:

How they work:

- **Electrochemical Reaction:**

Fuel cells utilize an electrochemical reaction, not combustion, to produce electricity.

- **Components:**

They consist of two electrodes (anode and cathode) separated by an electrolyte.

- **Fuel and Oxidant:**

Hydrogen is commonly used as the fuel, and oxygen (often from the air) is the oxidant.

- **Electricity Generation:**

At the anode, hydrogen is split into protons and electrons. The electrons flow through an external circuit, generating an electric current, while protons pass through the electrolyte. At the cathode, the protons, electrons, and oxygen combine to form water.

Key features:

- **Continuous Power:**

Fuel cells can produce electricity as long as fuel and oxidant are supplied.

- **Clean Energy:**

When using hydrogen, they produce only water and heat as byproducts, making them a clean energy source.

- **High Efficiency:**

Fuel cells are generally more efficient than combustion engines.

- **Applications:**

Fuel cells have a wide range of applications, including powering vehicles, buildings, and portable devices.

Types of fuel cells:

- **Proton Exchange Membrane Fuel Cells (PEMFCs):** Used in vehicles and portable applications.

- **Solid Oxide Fuel Cells (SOFCs):** Used in stationary power generation.

- **Alkaline Fuel Cells (AFCs):** Historically used in space applications.

Comparison with batteries:

- **Recharging:**

Batteries require recharging, while fuel cells can operate continuously as long as fuel is supplied.

- **Energy Storage:**

Batteries store energy, while fuel cells convert energy from fuel to electricity.

