PNS SCHOOL OF ENGINEERING & TECHNOLOGY
Nishamani Vihar, Marshaghai, Kendrapara

LECTURE NOTES

DATA STRUCTURE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

3RD SEMESTER

PREPARED BY

MRS. JAYASHREE BISHOI

LECTURER IN COMPUTER SCIENCE & ENGINEERING

CHAPTER-1

Introduction to Data Structures

1.1 Basic Terminology

1.2 Classification of Data Structure

1.3 Operations on Data Structure

1.4 Asymptotic and worst-case analysis of algorithms.

Introduction

Data

The term Data is defined as a raw and unstructured fact that needs to be processed to make it
Meaningful. Data can be simple and unstructured at the same time until it is structured. Usually
data contains facts, numbers, symbols, image, observations, perceptions, characters, etc.
Information

The term Information is defined as a set of data that is processed according to the given
requirement in a meaningful way. To make the information useful and meaningful, it must be
processed, presented and structured in a given context. Information is processed from data and
possess context, purpose and relevance.

Data Type:

Data types are used within type systems, which offer different ways of defining, implementing
and using the data. Different languages may use different terminology. Common data types are :
Integers,

Booleans,

Characters,

Floating-point numbers,

Alphanumeric strings.

What is a Data Type?

A data type is a classification that tells a computer or programming language:

e What kind of data is being stored, and
o What operations can be performed on that data.

For example:
o Is the data a number?
o Isit text?
o Is it a true/false value?
e Oris it a more complex structure, like an object or list?
So, data types help a program manage memory efficiently and perform correct operations.

Classes of Data Types

Data types are usually grouped into two main classes (sometimes three if you separate
Abstract/Derived types):

1 Primitive (Basic) Data Types

These are the simplest, predefined by the programming language.

Class Description Examples
Integer Whole numbers without decimals int in C/C++, Java
Floating Point Numbers with decimals float, double
Character Single alphabet or symbol char
Boolean Logical true or false bool
Void Represents absence of value ;f;)til;irr(lunssglifz;)functions that
2Derived Data Types
These are built from primitive data types.

Class Description Examples
Array Collection of elements of the same type int arr[10];
Pointer Stores memory address of another variable |[int *ptr;
Function gl/lgiic;ns can be treated as data types (in void func():
Reference ||Alias for another variable (C++) int &ref = var;

3User-Defined or Abstract Data Types

Created by programmers to model real-world entities.

Class Description Examples

struct Employee { int id; char

Structure (struct) ||Groups variables of different types name[20]: }:

Union Like struct, but shares memory union Data { int i; float f; };

Used in OOP; defines objects with

1 1 o 13
Class attributes & methods class Car { ... };
Enumeration enum Color { RED, GREEN,
User-defined constants
(enum) BLUE };
Summary
Class of Data Type Includes
Primitive int, float, char, bool
) arrays, pointers, functions,
Derived
references
User-defined structs, unions, classes, enums

Introduction to Data Structure

A data structure is a particular way of organising data in a computer so that it can be used
effectively. The idea is to reduce the space and time complexities of different tasks.

The choice of a good data structure makes it possible to perform a variety of critical operations
effectively. An efficient data structure also uses minimum memory space and execution time to
process the structure. A data structure is not only used for organising the data. It is also used
for processing, retrieving, and storing data. There are different basic and advanced types of
data structures that are used in almost every program or software system that has been
developed. So we must have good knowledge of data structures.

Definition

In Computer Science, data structure is a storage that is used to store and organize data. It is

a way of arranging data on a computer so that it can be accessed and updated efficiently. Data
structures determine the way in which information can be stored in computer and used. Finding
the

best data structure when solving a problem is an important part of programming. Programs that
use

the right data structure are easier to write, and work better.

Data Structure Operations:

The various operations that can be performed on different data structures are as follows:
. Create— A data structure created from data.

. Traverse — Processing each element in the list

. Searching — Finding the location of given element.

. Insertion — Adding a new element to the list.

. Deletion — Removing an element from the list.

. Sorting — Arranging the records either in ascending or descending order.

. Merging — Combining two lists into a single list.

. Modifying — the values of DS can be modified by replacing old values with new ones.
9. Copying — records of one file can be copied to another file.

10. Concatenating — Records of a file are appended at the end of another file.

11. Splitting — Records of big file can be splitting into smaller files.

Need Of Data Structure:

The structure of the data and the synthesis of the algorithm are relative to each other. Data
presentation must be easy to understand so the developer, as well as the user, can make an
efficient implementation of the operation.
Data structures provide an easy way of organising, retrieving, managing, and storing data.
Here is a list of the needs for data.
o Data structure modification is easy.
e It requires less time.
o Save storage memory space.
o Data representation is easy.
o Easy access to the large database
Classification/Types of Data Structures:
1. Linear Data Structure
2. Non-Linear Data Structure.
Linear Data Structure:
o Elements are arranged in one dimension ,also known as linear dimension.
o Example: lists, stack, queue, etc.
Non-Linear Data Structure
o Elements are arranged in one-many, many-one and many-many dimensions.
o Example: tree, graph, table, etc.

03N LN KW

Classification of Data Structure

—
Data Structure |
 Sisae s ilalal

Linear Data

|Non-linear Data |

structure

Array | | Cueue | | Stack I | Linked list

e Linear data structure: Data structure in which data elements are arranged sequentially or
linearly, where each element is attached to its previous and next adjacent elements, is called
a linear data structure.

Examples: array, stack, queue, linked list, etc.

o Static data structure: Static data structure has a fixed memory size. It is easier to access
the elements in a static data structure.
Example: array data structure.

e Dynamic data structure: In the dynamic data structure, the size is not fixed. It can be
randomly updated during the runtime which may be considered efficient concerning the
memory (space) complexity of the code.

Examples: stack and queue data structures.

e Non-linear data structure: Data structures where data elements are not placed sequentially
or linearly are called non-linear data structures. In a non-linear data structure, we can't
traverse all the elements in a single run.

Examples: tree and graph data structures.

Arrays Data Structure

An array is a linear data structure and it is a collection of element of same data type stored

at contiguous memory locations.

It offers mainly the following advantages.

e« Random Access: i-th elements can be accessed in O(1) Time as we have the base address
and every element is of same size.

e Cache Friendliness: Since elements are stored at contiguous locations, we get the
advantage of locality of reference.

Memory Location

200 201 202 203 204 205 206~ = =
U B F D A E < = i -
(o g > 3 a 5 S - - B
Index
Array

Different applications of an array are as follows:

Arrays efficiently manage and store database records.

o It helps in implementing sorting algorithm.

e It is also used to implement other data structures like Stacks, Queues, Heaps, Hash tables,
etc.

e An array can be used for CPU scheduling.

Linked list Data Structure

A linked list is a linear data structure in which elements are not stored at contiguous memory

locations. The elements in a linked list are linked using pointers as shown in the below image.

Head

S I o R I o N B e N B e

Data Next

Linked List

Applications of the Linked list

o Linked lists are used to implement other data structures like stacks, queues, etc.

o It is used for the representation of sparse matrices.

o Itis used in the linked allocation of files.

o Linked lists are used to display image containers. Users can visit past, current, and next
images.

o They are used to perform undo operations.

Stack Data Structure

Stack is a linear data structure that follows LIFO(Last in first out) principle i.e., entering and

retrieving data is possible from only one end. The entering and retrieving of data is also called

push and pop operation in a stack.

Push

Stack Data Structure

Stack

Applications of Stack

Different applications of Stack are as follows:

o The stack data structure is used in the evaluation and conversion of arithmetic expressions.
o It is used for parenthesis checking and string reversal.

e A memory stack is also used for processing function calls.

e The stack is used in virtual machines like JVM.

Queue Data Structure

Queue is a linear data structure that follows First In First Out(FIFO) principle i.e. the data
item stored first will be accessed first. In this, entering is done from one end and retrieving
data is done from other end. An example of a queue is any queue of consumers for a resource
where the consumer that came first is served first.

Queue

Front / Head Back / Tail / Rear
[31415161718] Enqueue
Dequeue
II!III

Queue Data Structure

Applications of Queue:

Different applications of Queue are as follows:

e Queue is used for handling website traffic.

o It helps to maintain the playlist in media players.

o It helps in serving requests on a single shared resource, like a printer, CPU task scheduling,
etc.

e Queues are used for job scheduling in the operating system.

Tree Data Structure

A tree is a non-linear and hierarchical data structure where the elements are arranged in a tree-
like structure. In a tree, the topmost node is called the root node. Each node contains some
data, and data can be of any type. It consists of a central node, structural nodes, and sub-nodes
which are connected via edges. Different tree data structures allow quicker and easier access to
the data as it is a non-linear data structure.

Parent Node

Applications of Tree:

e Heap is a tree data structure that is implemented using arrays and used to implement priority
queues.

e B-Tree and B+ Tree are used to implement indexing in databases.

o Syntax Tree helps in scanning, parsing, generation of code, and evaluation of arithmetic
expressions in Compiler design.

e Spanning trees are used in routers in computer networks.

o Domain Name Server also uses a tree data structure.

Binary Search Tree Data Structure

A Binary Search Tree (or BST) is a data structure used for organizing and storing data in a

sorted manner. Each node in a Binary Search Tree has at most two children, a left child and

a right child, with the left child containing values less than the parent node and the right child

containing values greater than the parent node. This hierarchical structure allows for

efficient searching, insertion, and deletion operations on the data stored in the tree.

8

a 7 13

[Binary Search Tree]

Applications of Binary Search Tree:

o A Self-Balancing BST maintains a sorted stream of data in RAM, useful for tracking online
orders by price and querying item counts above or below a given cost.

e It enables a doubly-ended priority queue, supporting
both extractMin() and extractMax() in O(log n) time, unlike a Binary Heap.

e Many algorithmic problems, like counting smaller elements on the right or finding the
smallest greater element, benefit from a Self-Balancing BST.

e Tree Map and Tree Set in Java, and set and map in C++, are implemented using Red-
Black Trees, a type of Self-Balancing BST.

Graph Data Structure

A graph is a non-linear data structure that consists of vertices (or nodes) and edges. It consists

of a finite set of vertices and set of edges that connect a pair of nodes. The graph is used to

solve the most challenging and complex programming problems. It has different terminologies

which are Path, Degree, Adjacent vertices, Connected components, etc.

Edge

Vertices Graph

Applications of Graph:

o The operating system uses Resource Allocation Graph.

e Also used in the World Wide Web where the web pages represent the nodes.

e One of the most common real-world examples of a graph is Google Maps where cities are
located as vertices and paths connecting those vertices are located as edges of the graph.

e A social network is also one real-world example of a graph where every person on the
network is a node, and all of their friendships on the network are the edges of the graph.

Operations on Data Structure
Operations on data structures refer to the fundamental actions that can be performed to
manipulate and interact with the data stored within them. These operations vary depending on
the specific data structure but generally fall into common categories.

Common Operations on Data Structures:

e Insertion:

The process of adding a new data element into the data structure. The placement of the new
element depends on the structure's rules (e.g., at the end of a list, at the top of a stack, or based
on a key in a hash table).

e Deletion:

The process of removing an existing data element from the data structure. This may involve
removing a specific element, the first element, or the last element, depending on the data
structure and the deletion criteria.

e Traversal:

The operation of visiting and processing each element within the data structure, often in a
specific order (e.g., sequentially in an array, in-order in a binary search tree).

Searching:

The process of locating a specific data element within the data structure based on a given key or
value.

Sorting:

The operation of arranging the elements within the data structure in a specific order, such as
ascending or descending.

Updating/Modification:

The process of changing the value of an existing data element within the data structure.
Access:

Retrieving the value of an element at a specific position or based on a key.
Merging:

Combining two or more data structures into a single data structure, often while maintaining a
specific order if the original structures were sorted.

Reversing:
Changing the order of elements within a data structure to the inverse of their original
arrangement.
The specific set of operations and their implementation details will vary significantly across
different data structures like arrays, linked lists, stacks, queues, trees, graphs, and hash tables.

Asymptotic Analysis

Asymptotic analysis of an algorithm refers to defining the mathematical foundation/framing of
its run-time performance. Using asymptotic analysis, we can very well conclude the best case,
average case, and worst case scenario of an algorithm.

Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to
work in a constant time. Other than the "input" all other factors are considered constant.

Asymptotic analysis refers to computing the running time of any operation in mathematical units
of computation. For example, the running time of one operation is computed as f(n) and may be
for another operation it is computed as g(n?). This means the first operation running time will
increase linearly with the increase in n and the running time of the second operation will increase
exponentially when n increases. Similarly, the running time of both operations will be nearly the
same if n is significantly small.

Usually, the time required by an algorithm falls under three types —
e Best Case — Minimum time required for program execution.
e Average Case — Average time required for program execution.

e Worst Case — Maximum time required for program execution.

Asymptotic Notations

Execution time of an algorithm depends on the instruction set, processor speed, disk I/O speed,
etc. Hence, we estimate the efficiency of an algorithm asymptotically.

Time function of an algorithm is represented by , where @ is the input size.
Different types of asymptotic notations are used to represent the complexity of an algorithm.

Following asymptotic notations are used to calculate the running time complexity of an
algorithm.

Types of Asymptotic Notations

Asymptotic notation is a mathematical tool used in computer science to describe the efficiency of
algorithms, particularly how their performance (time or space) scales with the size of the input.
There are five main types of asymptotic notations:

Big O Notation (O): Represents the worst-case complexity of an algorithm, providing an upper
bound on its growth rate. If an algorithm's running time is O(f(n)), it means that the running time
will not grow faster than f(n) (multiplied by a constant) for large inputs. This is the most
commonly used notation for comparing algorithms because it helps predict performance under
the most challenging scenarios.

Examples: O(1) (constant time, like accessing an array element), O(log n) (logarithmic time, like
binary search), O(n) (linear time, like linear search), O(n?) (quadratic time, like bubble sort).

Big Omega Notation (Q2): Represents the best-case complexity, providing a lower bound on an
algorithm's growth rate. If an algorithm's running time is Q(f(n)), it means that the running time
will grow at least as fast as f(n) (multiplied by a constant) for large inputs.

Examples: Q(1) (constant time, best case for many operations), {(log n) (best case for binary
search).

Big Theta Notation (®): Represents the average-case complexity, providing a tight bound on the
growth rate. If an algorithm's running time is ®(f(n)), it means it is bounded both from above and
below by constant multiples of f(n). This provides a more precise description of the algorithm's
typical performance.

Examples: O(1) (constant time, like array access in best case), @(n) (linear time, traversing a
linked list).

Little o Notation (0): Provides a strict upper bound on an algorithm's growth rate, indicating that
it is strictly less than the specified function for large inputs. If an algorithm's running time is
o(f(n)), it means the running time becomes insignificant compared to f(n) as the input size
approaches infinity.

o

Example: If an algorithm is o(n?), its growth is faster than n, but never reaches n>.

Little Omega Notation (w): Provides a strict lower bound on an algorithm's growth rate,
indicating that it is strictly greater than the specified function for large inputs. If an algorithm's
running time is o(f(n)), it means the running time grows faster than f(n) for large inputs.

Example: If an algorithm is (n), its runtime grows faster than n, potentially quadratically or
exponentially.

In essence, Big-O focuses on the upper limit (worst-case), Big-Omega on the lower limit (best-
case), and Big-Theta provides a more exact "tight" bound, representing both upper and lower
limits. Little-o and Little-omega offer strict bounds that are not asymptotically tight, meaning the
functions do not grow at the same rate but one is strictly slower or faster than the other.

Worst-case Analysis of Algorithm

1. Worst Case Analysis (Mostly used)

e In the worst-case analysis, we calculate the upper bound on the running time of an
algorithm. We must know the case that causes a maximum number of operations to be
executed.

o For Linear Search, the worst case happens when the element to be searched (x) is not
present in the array. When x is not present, the search() function compares it with all the
elements of arr[] one by one.

e This is the most commonly used analysis of algorithms (We will be discussing below why).
Most of the time we consider the case that causes maximum operations.

2. Best Case Analysis (Very Rarely used)

e In the best-case analysis, we calculate the lower bound on the running time of an algorithm.
We must know the case that causes a minimum number of operations to be executed.

o For linear search, the best case occurs when x is present at the first location. The number of
operations in the best case is constant (not dependent on n). So the order of growth of time
taken in terms of input size is constant.

3. Average Case Analysis (Rarely used)

o In average case analysis, we take all possible inputs and calculate the computing time for all
of the inputs. Sum all the calculated values and divide the sum by the total number of
inputs.

e We must know (or predict) the distribution of cases. For the linear search problem, let us
assume that all cases are uniformly distributed (including the case of x not being present in
the array). So we sum all the cases and divide the sum by (n+1). We take (n+1) to consider
the case when the element is not present.

Why is Worst Case Analysis Mostly Used?

Average Case : The average case analysis is not easy to do in most practical cases and it is

rarely done. In the average case analysis, we need to consider every input, its frequency and

time taken by it which may not be possible in many scenarios

Best Case : The Best Case analysis is considered bogus. Guaranteeing a lower bound on an

algorithm doesn't provide any information as in the worst case, an algorithm may take years to
run.

Worst Case: This is easier than average case and gives an upper bound which is useful
information to analyze software products.

Chapter-2
Linear Data Structures

