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STRENGTH OF MATERIALS

When an external force acts on a body, the body tends to undergo some deformation. Due to cohesion between
the molecules, the body resists deformation. The resistance by which material of the body opposes the
deformation is known as strength of material. Within a certain limit (i.e,the elastic stage) the resistance
offered by the material is proportional to the deformation brought out on the material by external force. Also
within this limit the resistance is equal to external force or applied load. But beyond the elastic stage the
resistance offered by the material is less than the applied load. In such cases deformation continues, until
failure takes place.

Within elastic stage, the resisting force per unit area is called stress or Intensity of Stress.

Stress:-

The Force of resistance per unit area, offered by a body against deformation is known as stress. The external
force acting on the body is called load or force. The load is applied on the body while the stress is induced in
the material of the body. A loaded member remains in equilibrium when the resistance offered by the member
against the deformation and the applied load are equal.

Mathematically stress is written as, g = 1

where o = Stress (also called intensity of stress),
P = External force or load, and
A = Cross-sectional area.

| 1.2.1. Units of Stress] The unit of stress depends upon the unit of load (or force) and
unit of area. In M.K.S. units, the force is expressed in kgf and area in metre square (i.e., m?).
Hence unit of stress becomes as kgf/m?. If area is expressed in centimetre square (i.e., cm?),
the stress is expressed as kgffem?.

In the S.1. units, the force is expressed in newtons (written as N) and area is expressed
as m2. Hence unit of stress becomes as N/mZ2. The area is also expressed in millimetre square
then unit of force becomes as N/mm?

1 N/m? =1N/A100 cm)* = 1 N/10* em?

= 10~ N/em? or 10-% N/mm? [ 5= - }

: 1 N/mm? = 10% N/m2.
Also 1 N/m? = 1 Pascal = 1 Pa.

Notes. 1. Newton is a force acting on a mass of one kg and produces an acceleration of 1 m/s? i.e.,
1N =1(kg)x 1 m/s%.

2, The stress in S.1. units is expressed in N/m? or N/mm?.

8. The stress 1 N/mm? = 10% N/m? = MN/m2, Thus one N/mm? is equal to one MN/m?.

4. One pascal is written as 1 Pa and is equal to 1 N/m*,
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Strain:-

When a body is subjected to some external force, there is some change of dimension of
the body. The ratio of change of dimension of the body to the original dimension is known as
strain. Strain is dimensionless.

Strain may be :

1. Tensile strain, 2. Compressive strain,

3. Volumetric strain, and 4, Shear strain.

If there is some increase in length of a body due to external force, then the ratio of
increase of length to the original length of the body is known as tensile strain. But if there is
some decrease in length of the body, then the ratio of decrease of the length of the body to the
original length is known as compressive strain. The ratio of change of volume of the body to
the original volume is known as volumetric strain. The strain produced by shear stress is
known as shear strain.

Types of Stresses:-

The Stresses are classified into two types
1) Normal stress or Direct Stress
11) Shear stress

The Normal Stress is divided into two types
a) Tensile Stress and
b) Compressive Stress

1.4.1. Tensile Stress. The stress induced in a body, when subjected to two equal and
opposite pulls as shown in Fig. 1.1 (a) as a result of which there is an increase in length, is
known as tensile stress. The ratio of increase in length to the original length is known as tensile
strain. The tensile stress acts normal to the area and it pulls on the area.

Let P = Pull (or foree) acting on the body,
A = Cross-sectional area of the body,
L = Original length of the body,
dL = Increase in length due to pull P acting on the body,
¢ = Stress induced in the body, and

e = Strain (i.e., tensile strain).

Fig. 1.1 (a) shows a bar subjected to a tensile force P at its ends. Consider a section x-x,
which divides the bar into two parts. The part left to the section x-x, will be in equilibrium if
P = Resisting force (R). This is shown in Fig. 1.1 (b). Similarly the part right to the section
x-x, will be in equilibrium if P = Resisting force as shown in Fig. 1.1 (¢). This resisting force per
unit area is known as stress or intensity of stress.

Page | 2

L




e

s
i
r
I
i

P P
- —¥
* (a)
P —
- — : » Resisting force (R)
—s
i ()
— P
‘__..
Resisting force (R) +— .
&
: (e)
2 = = P
1 R i 4R —
-~
: (d)
Fig. 1.1

Resisting force (R) _ Tensile load (P)

Tensile stress =0 = T e P T (-~ P=R)
g = .g. (113
=% kLl
And tensile strain is given by,
_ Increasein length _ dL (1.2)

Original length =~ L

1.4.2. Compressive Stress. The stress induced in a body, when subjected to two equal
and opposite pushes as shown in Fig. 1.2 (a) as a result of which there is a decrease in length
of the body, is known as compressive stress. And the ratio of decrease in length to the original
length is known as compressive strain. The compressive stress acts normal to the area and it
pushes on the area.

Let an axial push P is acting on a body in cross-sectional area A, Due to external push P,
let the original length L of the body decreases by dL.

Let P = Force acting on the body

A = Cross sectional Area of the body
L = Original Length of the body
dL = Increase in length of the body due to Force P acting on the body
o = Stress induced in the body
e = Compressive Strain
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Fig. 1.2
Then compressive stress is given by,
_ Resisting Force (R) _ Push (P) =£
Area (A) Area(A) A’
And compressive strain is given by,
- Decrease in length =£'
Original length L
1.4.3. Shear Stress, The stress induced in a body, when subjected to two equal and
opposite forces which are acting tangentially across the resisting section as shown in Fig. 1.3
as a result of which the body tends to shear off across the section, is known as shear stress.

The corresponding strain is known as shear strain. The shear stress is the stress which acts
tangential to the area. It is represented by t.
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Consider a rectangular block of height &, length L and width unity. Let the bottom face
AB of the block be fixed to the surface as shown in Fig. 1.4 (a). Let a force P be applied
tangentially along the top face CD of the block. Such a force acting tangentially along a
surface is known as shear force. For the equilibrium of the block, the surface AB will offer a
tangential reaction P equal and opposite to the applied tangential force P.

P P
D — C D — C
Resistance
R—-=s
I X X X—x x
+—R
I.

P i FFd L adELiddd FELL i rrEiiiiii
A +— P B A +— P B
f—— L Ll

{al) (L] (4]

Fig. 1.4

Consider a section x-x (parallel to the applied force), which divides the block into two
parts. The upper part will be in equilibrium if P = Resistance (R). This is shown in Fig, 1.4 (b).
Similarly the lower part will be in equilibrium if P = Resistance (R) as shown in Fig. 1.4 (¢).
This resistance is known as shear resistance. And the shear resistance per unit area is known
as shear stress which is represented by .

R 5 Shear resistance = R
w She 'T% " Sheararea A
= r (v R=PandA=L=x1) 111
= Lx1 s = an = x o
Note that shear stress is tangential to the area over which it acts.
As the bottom face of the block is fixed, the face = -
= : i .
ABCD will be distorted to ABC D, through an angle ¢ D D c c P
as a result of force P as shown in Fig. 1.4 (d). ! [
And shear strain (¢) is given by, / '.*'
. Transversal displacement ik 4,‘," .,,."
Distance AD 7 R
oF _ DD. _df ] 0 FIrr Irz;f;rl{l:ll:/a!zll!.r(:.vl(f
T AD " h i - "

Elasticity and Elastic Limit:-

When an external force acts on a body, the body tends to undergo some deformation. If
the external force is removed and the body comes back to its original shape and size (which
means the deformation disappears completely), the body is known as elastic body. This property,

by virtue of which certain materials return back to their original position after the removal of
the external force, is called elasticity.

The body will regain its previous shape and size only when the deformation caused by
the external force, is within a certain limit. Thus there is a limiting value of force up to and
within which, the deformation completely disappears on the removal of the force. The value
of stress corresponding to this limiting force is known as the elastic limit of the material.

If the external force is so large that the stress exceeds the elastic limit, the material
loses to some extent its property of elasticity. If now the force is removed, the material will
not return to its original shape and size and there will be a residual deformation in the material.
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Hooke’s Law:-

Hooke's Law states that when a material is loaded within elastic limit, the stress is
proportional to the strain produced by the stress. This means the ratio of the stress to the
corresponding strain is a constant within the elastic limit. This constant is known as Modulus
of Elasticity or Modulus of Rigidity or Elastic Modulii.

Mathematically, © o €

c=Exe
(Where E is Proportionality constant or it is also called as Young’s Modulus of elasticity)
a
E =
e

Modulus of Elasticity or Young’s modulus:-

The ratio of tensile stress or compressive stress to the corresponding strain is a constant.
This ratio is known as Young's Modulus or Modulus of Elasticity and is denoted by E.

. Tensile stress , Compressive stress
Tensile strain Compressive strain
or E= g (1.5}
e

1.7.1. Modulus of Rigidity or Shear Modulus. The ratio of shear stress to the
corresponding shear strain within the elastic limit, is known as Modulus of Rigidity or Shear
Modulus. This is denoted by C or G or N.

Shearstress 1
X C G - = -
o Loriy) Shear strain ¢

Let us define factor of safety also.

. 1.8)

1.8. FACTOR OF SAFETY

It is defined as the ratio of ultimate tensile stress to the working (or permissible) stress.
Mathematically it is written as

Ultimate stress
Factor of safety = Permissible stress

1.9. CONSTITUTIVE RELATIONSHIP BETWEEN STR

A 17D

ESS AND STRAIN

1.9.1. For One-Dimensional Stress System. The relationship between stress and
strain for a unidirectional stress (i.e., for normal stress in one direction only) is given by
Hooke’s law, which states that when a material is loaded within its elastic limit, the normal
stress developed is proportional to the strain produced. This means that the ratio of the normal
stress to the corresponding strain is a constant within the elastic limit. This constant is
represented by E and is known as modulus of elasticity or Young’s modulus of elasticity.

Normal stress

4]
Corresponding strain mSUnee o e £
where o = Normal stress, ¢ = Strain and E = Young's modulus
_© .7
or e-E kel 1A

The above equation gives the stress and strain relation for the normal stress in one
direction,
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1.9.2. For Two-Dimensional Stress System. Before knowing the relationship between
stress and strain for two-dimensional stress system, we shall have to define longitudinal
strain, lateral strain, and Poisson’s ratio,

1. Longitudinal strain. When a body is subjected to an axial tensile load, there is an
increase in the length of the body, But at the same time there is a decrease in other dimensions
of the body at right angles to the line of action of the applied load. Thus the body is having
axial deformation and also deformation at right angles to the line of action of the applied load
(i.e., lateral deformation).

The ratio of axial deformation to the original length of the body is known as longitudinal
{or linear) strain. The longitudinal strain is also defined as the deformation of the body per
unit length in the direction of the applied load.

Let L = Length of the body,

P = Tensile force acting on the body,
8L = Increase in the length of the body in the direction of P.
Then, longitudinal strain = %

2. Lateral strain. The strain at right angles to the direction of applied load is known
as lateral strain. Let a rectangular bar of length L, breadth b and depth d is subjected to an
axial tensile load P as shown in Fig. 1.5. The length of the bar will increase while the breadth
and depth will decrease.

Let dL = Increase in length,
8b = Decrease in breadth, and
3d = Decrease in depth.

Then longitudinal strain = E-;'—- LT

and lateral strain = % or — SILTACH

Note. (£) If longitudinal strain is tensile, the lateral strains will be compressive.
(i) If longitudinal strain is compressive then lateral strains will be tensile.
(éii) Hence every longitudinal strain in the direction of load is accompanied by lateral strains of
the apposite kind in all directions perpendicular to the load.
3. Poisson's ratio. The ratio of lateral strain to the longitudinal strain is a constant
for a given material, when the material is stressed within the elastic limit. This ratio is called
Poisson’s ratio and it iz generally denoted by . Hence mathematieally,

o Lateral strain o
Poisson's ratio, p = — - LT (DY
Longitudinal strain

or  Lateral strain = p x Longitudinal strain

As lateral strain is opposite in sign to longitudinal strain, hence algebraically, lateral
strain is written as

Lateral strain = — p x Longitudinal strain ikl T (BN

The value of Poisson's ratio varies from 0.25 to 0.33. For rubber, its value ranges [rom
0.45 to 0.50.
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4. Relationship between stress and strain. Consider a
two-dimensional figure ABCD, subjected to two mutually %2
perpendicular stresses o, and o, A 0

Refer to Fig. 1.5 (a).
Let o, = Normal stress in x-direction
6, = Normal stress in y-direction o, oy
Consider the strain produced by o,. & 3
The stress ¢, will produce strain in the direction of x and l
also in the direction of y. The strain in the direction of x will be o,

5 v . ; g p
longitudinal strain and will be equal to EL whereas the strain Fig L5 ()

in the direction of y will be lateral strain andwiﬂbeequalm_pxigl_

(++ Lateral strain. = — u x longitudinal strain)
Now consider the strain produced by o,
The stress ¢, will produce strain in the direction of y and also in the direction of x. The

strain in the direction of ¥ will be longitudinal strain and will be equal to EE& whereas the

strain in the direction of x will be lateral strain and will be equal to — 1 x "Eﬂ.

Let e, = Total strain in x-direction
e, = Total strain in y-direction

Now total strain in the direction of x due to stresses ¢, and ¢, = % =i} °—E2
Similarly total strain in the direction of y due to stresses 0, and o, = % —p %
e ey (1.7 (F)
e, = cesl Aol (R
=B MTE |
G Ly n tE0
effz_“ft L7 (G

The above two equations gives the stress and strain relationship for the two-dimensional
stress system. In the above equations, tensile stress is taken to be positive whereas the
compressive stress negative.

1.9.3. For Three-Dimensional Stress System, Fig. 1.5 (b) shows a three-dimensional
body subjected to three orthogonal normal stresses o,, 0,, 0, acting in the directions of x, y
and z respectively.

Consider the strains produced by each stress ¥ F-
separately. T T =
The stress o, will produce strain in the direction of ,
x and also in the directions of y and z. The strain in the :T
direction of x will be % whereas the strains in the direction i —"
L
I'd ; KRR b e i
of y and z will be — p % o | . X

Similarly the stress o, will produce strain %‘ in Z

the direction of ¥ and strain of — p % in the direction of x
and y each.
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Also the stress o, will produce strain EEl in the direction of z and strain of — i x EEQ— in
the direction of x and y.

o o, o
c,andg, = —L-p—2_p-3
A A R

Similarly total strains in the direction of y due to stresses ¢,, 0, and g,

Total strain in the direction of x due to stresses o,

I T L
T 'EV'E
and total strains in the direction of z due to stresses 6|, 6, and o,
L R, TG ]
E "E"E
Let e, e, and e, are total strains in the direction of x, y and z respectively. Then
cl=%_n°_£_u°_g 1.7 ()
e2=%-}l%‘u% LT (D)
L+] a [
and e,=— —p—L_p-2 1.7 )
= P E Mg

The above three equations give the stress and strain relationship for the three orthogonal
normal stress system.
Problem 1.1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of
20 kN. If the modulus of elasticity of the material of the rod is 2 x 10° N/mm? ; determine :
(1) the stress,
(ii) the strain, and
(¢it) the elongation of the rod.

Sol. Given : Length of the rod, L =150cm

Diameter of the rod, D=20cm =20 mm
- Area, A= E (20)2 = 100% mm?
Axial pull, P=20kN = 20,000 N
Modulus of elasticity, E = 2.0 x 10° N/mm?
(1) The stress (o) is given by equation (1.1) as
= % = % = 63.662 N/mm?2. Ans.
(£1) Using equation (1.5), the strain is obtained as
E=Z,
: 63.662
i g _ o _
Strain, e=g= T e 0.000318. Ans.
(iif) Elongation is obtained by using equation (1.2) as
dL

e = —

.~ Elongation,dL =e x L
=0.000318 x1500
=0.477 mm
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2.4. POISSON'S RATIO

The ratio of lateral strain to the longitudinal strain is a constant for a given material,
when the material is stressed within the elastic limit. This ratio is called Poisson’s ratio
and it is generally denoted by p. Hence mathematically,

Poisson's ratio Lateral strain g
- Longitudinal strain el
or Lateral strain = p x longitudinal strain

As lateral strain is opposite in sign to longitudinal strain, hence algebraically, the lateral
strain is written as
Lateral strain = — p x longitudinal strain 2.3 (A
The value of Poisson's ratio varies from 0.25 to 0.33. For rubber, its value ranges from
0.45 to 0.50.

2.5. VOLUMETRIC STRAIN

The ratio of change in volume to the original volume of a body (when the body is subjected
to a single force or a system of forces) is called volumetric strain. It is denoted by e,.

Mathematically, volumetric strain is given by

8V

e =3

where §V = Change in volume, and
V = Original volume.

2.7. BULK MODULUS

When a body is subjected to the mutually perpendicular like and equal direct stresses,
the ratio of direct stress to the corresponding volumetric strain is found to be constant for a
given material when the deformation is within a certain limit. This ratio is known as bulk
modulus and is usually denoted by K. Mathematically bulk modulus is given by
K= Direct stress o
Volumetric strain ( dv ]
v

A2

Problem 1.2, Find the minimum diameter of a steel wire, which is used to raise a load
of 4000 N if the stress in the rod is not to exceed 95 MN/m?®.

Sol. Given : Load, P =4000N

Stress, o = 95 MN/m? = 95 x 10% N/m? (x> M = Mega = 10%)
= 95 N/mm?* (-~ 10% N/m* =1 N/mm?)
Let D = Diameter of wire in mm
Area, = E n?
Load P
N m = = =
o Stress Area A
95 = = :4 or D?= X4=53.61
®p? nD nx95
4

D=792mm. Ans.
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Problem 2.1. Determine the changes in length, breadth and thickness of a steel bar
which is 4 m long, 30 mm wide and 20 mm thick and is subjected to an axial pull of 30 kN in
the direction of its length. Take E = 2 x 10° Nimm?* and Poisson’s ratéo = 0.3.

Sol. Given :

Length of the bar,

Breadth of the bar,

Thickness of the bar,
Area of cross-section,

Axial pull,

Young’s modulus,

Poisson's ratio,

L =4 m = 4000 mm

b =30 mm

(=20 mm
A=bxt=230x20 =600 mm?
P =30KkN = 30000 N

E =2 x 10° N'mm?

u=0.3.

Now strain in the direction of load (or longitudinal strain),

- Stress _ Load [ v Load
E ~ AreaxE ' ~ Arca
F 30000 _ .00025.

“AE 600x2x10°

8L
But longitudinal strain 7k

SL

— = 0.00025.

L

8L (or change in length) = 0.00025 x L
= 0.00025 x 4000 = L.O mm. Ans.

Using equation (2.3),

Lateral strain

Poisson’s ratio

or

“ Longitudinal strain
03 =

Lateral strain
0.00025

Lateral strain = 0.3 x 0.00025 = 0.000075.

We know that

. b ad
Lateral strain - or ?[

i

or —

¢

&b = b x Lateral strain

= 0,00225 mm. Ans,

= 0.0015 mm., Ans.

= 30 x 0.000075
Similarly, 8t = ¢ x Lateral strain

= 20 x 0.000075
Problem 2.2, Determine the value

bar of length 30 cm, breadth 4 ¢m and

of Young's modulus and Poisson’s ratio of a metallic
depth 4 em when the bar is subjected to an axial

compressive load of 400 kN. The decrease in length is given as 0.075 cm and increase in breadth

is 0.003 cm.,
Sol. Given :
Length, L = 30 cm ; Breadth, &
. Area of cross-section, A

Axial compressive load,
Decrease in length,
Increase in breadth,

Longitudinal strain

-|EnRERT

Lateral strain

4 cm ; and Depth, d = 4 em.

= bxd=4x4

= 16 em? = 16 x 100 = 1600 mm?
= 400 kN = 400 x 1000 N

= 0.075 em

= 0.003 em

076

o, = 0.0025

3
_0.008
4

= 0.00075.
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Lateral strain _ 0.00075

P 1 L 3 t' = = = 0-3. r\ =,
SRR Longitudinal strain  0.0025 »
Stress P Load P
. - . £ = . SLre = =
Longitudinal strain % AsE 88 o,z
0.0025 = 400000
1600 x E
400000

o TN R e
E= TE0 % (L0 1 x 10°* N/'mm?2. Ans

Stress-strain Diagram for Ductile Material (Mild Steel)

In designing various parts of a machine, it is necessary to know how the material will function
in service. For this, certain characteristics or properties of the material should be known. The
mechanical properties mostly used in mechanical engineering practice are commonly
determined from a standard tensile test. This test consists of gradually loading a standard
specimen of a material and noting the corresponding values of load and elongation until the
specimen fractures. The load is applied and measured by a testing machine. The stress is
determined by dividing the load values by the original cross-sectional area of the specimen.
The elongation 1s measured by determining the amounts that two reference points on the
specimen are moved apart by the action of the machine. The original distance between the two
reference points 1s known as gauge length. The strain 1s determined by dividing the elongation
values by the gauge length.

The values of the stress and corresponding strain are used to draw the stress-strain diagram of
the material tested. A stress-strain diagram for a mild steel under tensile test is shown in fig
given below. The various properties of the material are discussed below:
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Stress ——»
w
0
\
\
vy

O —— Strain ———>

Stress-Strain diagram for a mild steel specimen (fig. a)
L

i, T
I e ) %

Shape of the Specimen after elongation (fig. b)

1. Proportional limit. We see from the diagram that from point O to A 1s a straight line, which
represents that the stress is proportional to strain. Beyond point A, the curve slightly deviates
from the straight line. It is thus obvious, that Hooke's law holds good up to point A and it is
known as proportional limit. It is defined as that stress at which the stress-strain curve begins
to deviate from the straight line.

2. Elastic limit. It may be noted that even if the load is increased beyond point A upto the point
B, the matenal will regain its shape and size when the load 1s removed. This means that the
material has elastic properties up to the point B. This point is known as elastic limit. It is
defined as the stress developed in the material without any permanent set.

Note: Since the above two limits are very close to each other, therefore, for all practical
purposes these are taken to be equal.

3. Yield point. If the material is stressed beyond point B, the plastic stage will reach i.e. on the
removal of the load, the material will not be able to recover its original size and shape. A little
consideration will show that beyond point B, the strain increases at a faster rate with any
increase in the stress until the point C is reached. At this point, the material vields before the
load and there i1s an appreciable strain without any increase in stress. In case of mild steel, it
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will be seen that a small load drops to D, immediately after yielding commences. Hence there
are two yield points C and D. The points C and D are called the upper and lower yield points
respectively. The stress corresponding to yield point is known as yield point stress.

4. Ultimate stress. At D, the specimen regains some strength and higher values of stresses are
required for higher strains, than those between A and D. The stress (or load) goes on increasing
till the point E is reached. The gradual increase in the strain (or length) of the specimen is
followed with the uniform reduction of its cross-sectional area. The work done, during
stretching the specimen, is transformed largely into heat and the specimen becomes hot. At E,
the stress, which attains its maximum value is known as ultimate stress. It is defined as the
largest stress obtained by dividing the largest value of the load reached in a test to the original
cross-sectional area of the test piece.

5. Breaking stress. After the specimen has reached the ultimate stress, a neck is formed, which
decreases the cross-sectional area of the specimen, as shown in Fig. (b). A little consideration
will show that the stress (or load) necessary to break away the specimen, is less than the
maximum stress. The stress is, therefore, reduced until the specimen breaks away at point F.
The stress corresponding to point F is known as breaking stress.

Note: The breaking stress (i.e. stress at F which is less than at E) appears to be somewhat
misleading. As the formation of a neck takes place at E which reduces the cross-sectional area, it
causes the specimen suddenly to fail at F. If for each value of the strain between E and F, the
tensile load is divided by the reduced cross-sectional area at the narrowest part of the neck, then
the true stress-strain curve will follow the dotted line EG.

However, it is an established practice, to calculate strains on the basis of original cross-sectional
area of the specimen,

6. Percentage reduction in area. It is the difference between the original cross-sectional area
and cross-sectional area at the neck (i.e. where the fracture takes place). This difference is
expressed as percentage of the original cross-sectional area.
Let A = Original cross-sectional area, and
a = Cross-sectional area at the neck.
Then reduction in area = A = a
and percentage reduction in area = _A_a x 100
7. Percentage clongation. It is the percentage increase in the standard gauge length (i.e.
original length) obtained by measuring the fractured specimen after bringing the broken parts
together.
Let [ = Gauge length or original length, and
1. = Length of specimen after fracture or final length.
Elongation= L — [

And percentage elongation = L_;‘ x 100
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Problem 1.3, Find the Young's Modulus of a brass rod of diameter 25 mm and of
length 250 mm which is subjected to a tensile load of 50 kN when the extension of the rod
is equal to 0.3 mm.

Sol. Given : Dia. of rod, D =25 mm

Area of rod, A = % (25} = 490.87 mm?
Tensile load, P = B0kN =50« 1000 = 50,000 N
Extension of rod, dl. = 0.3 mm
Length of rod, L = 250 mm
Stress (o) is given by equation (1.1), as
P 50,000 i
o= —=—o = 101.86 N/mm?,
A 49087
Strain (e) is given by equation (1.2), as
dL 03
= —=——=0.0012.
=T " 250

Using equation (1.5), the Young’s Modulus (E) is obtained, as
Stress _ 101.86 N/mm*

E= Strain - 0.0012 = 84883.33 N/mm?
= B4883.33 x 10° N/m?. Ans. (> 1 N/mm? = 105 N/m?)
= 84.883 x 10° N/m? = 84.883 GN/m2. Ans. (+ 10°=G)
Problem 1.4, A tensile test wwas conducted on a mild sieel bar. The following data was
obtained from the test :
(i) Diameter of the steel bar =3em
(ii) Gauge length of the bar =20 cm
(iti) Load at elastic limit = 250 kN
{iv) Extension at a load of 150 kN =0.21 mm
(v) Maximum load = 380 kN
(vi) Total extension = 60 mm
(vii) Diameter of the rod at the failure =2.25 em.
Determine : (a) the Young's modulus, tb) the stress at elastic limit,

{¢) the percentage elongation, and (d) the percentage decrease in area.

Sol. Area of the rod, A:Em: E (3 cm?

2
= 7.0685 cm® = 7.0685 » 10~ m?, [ em® d(ﬁm :|
(a) To find Young's modulus, first calculate the value of stress and strain within elastic
limit. The load at elastic limit is given bul the extension corresponding to the load at elastic
limit is not given. But a load of 160 kN (which is within elastic limit) and corresponding
extension of 0.21 mm are given. Hence these values are used for stress and strain within
elastic limit

Load _ 150 x 1000 N/m?
Area  7.0685x 107

=21220.9 x 10* N/m?

Increase in length (or Extension)

Stress = (v 1 kN = 1000 N)

d Strain =
an rain Original length (or Gauge length)
0.21 mm
T 20x10mm RS

~ Young's Modulus,

Stress _ 21220.9 x 10*

— = = 20209523 x 107 N/m?
Strain 0.00105

E =
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= 202.095 x 10Y N/m* (= 10% = Giga =
= 202,095 GN/m2, Ans.
(6) The stress at the elastic limit is given by,
P Load at elastic limit = 250 x 1000
Area 7.0685x 107
= 35368 x 10* N/m?
= 353.68 x 10% N/m* (- 10°% = Mega =

= 353.68 MN/m?. Ans,
(c) The percentage elongation is obtained as,
Percentage elongation
- Total increase in length « 100
Original length (or Gauge length)

60 mm
— e —— - £ \ 5.
5010 x 100 = 309%. Ans

(d) The percentage decrease in area is obtained as,

Percentage decrease in area
_ (Original area — Area at the failure)

100
Original area
{gxaz -—Ex 225“’]
= x 2 x 100
—%3
4

= —“32 ]x 100 = &;‘m{” x 100 = 43.76%. Ans.

G)

M)
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Problem 1.6. The ultimate stress, for a hollow steel column which carries an axial load
of 1.9 MN is 480 Nimm?. If the external diameter of the column is 200 mm, determine the
internal diameter. Take the factor of safety as 4.

Sol. Given :

Ultimate stress = 480 N/mm?

Axial load, P=19MN=19x%x10°N (- M=105
= 1900000 N

External dia., D = 200 mm

Factor of safety = 4

Let d = Internal diameter in mm

Area of cross-section of the column,
A= E (D? - d?) = ; (2002 - d?) mm?

Using equation (1.7), we get
B Ultimate stress
"~ Working stress or Permissible stress
N 480

Working stress

480 ,
or  Working stress =3 = 120 N/mm?

o = 120 N/mm?

Now using equation (1.1), we get

Factor of safety

P 1900000 1900000 x 4
g=- or 120 = - = 3
A (20{;3 = dl) (40000 - d*)

1900000 x 4
%120
d* = 40000 - 20159.6 = 19840.4
d = 140.85 mm, Ans.

or 40000 - d* = = 20159.6
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ANALYSIS OF BARS OF VARYING SECTIONS

A bar of different lengths and of different diameters (and hence of different cross-
sectional areas) ig shown in Fig. 1.6 (a). Let this bar is subjected to an axial load P.

Section 3

Section 2

Section 1

—{ A | A A

H— L, e L, —pie Ly »

I"!:: 1.6 {a)

Though each section is subjected to the same axial load P, yet the stresses, strains and
change in lengths will be different. The total change in length will be obtained by adding the
changes in length of individual section.

Let P Axial load acting on the bar,

L, = Length of section 1,
A, = Cross-sectional area of section 1,
L, A, = Length and cross-sectional area of section 2,
L, A, = Lengthand cross-sectional area of section 3, and
E Young's modulus for the bar,
Then stress for the section 1,

n

_ Load _ B
~ Areaof sectionl A,
Similarly stresses for the section 2 and section 3 are given as,

9

and g, = E
Using equation (1.5), the strains in different sections are obtained.

g, = —
2
A,

Strain of section 1, ¢, = %Bﬁ (-,- o, = -E-]
1 1

Similarly the strains of section 2 and of section 3 are,
Oy P U_;] = P
"E AE’
Change in length of section 1
Length of section 1

But strain in section 1 =

or =5

where d[., = change in length of section 1.
. Change in length of section 1, dL, = ¢,L,

_ PL, — P
AE VT AE
Similarly changes in length of section 2 and of section 3 are obtained as :
Change in length of section 2, dL, = e, L,
Pb£ L] P
= AQE S0y = AEE
and change in length of section 3,dL = ¢ L,
_ PL, [ i
~ AE " AGE
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~ Total change in the length of the bar,

PL, " PL, n PLq

AE AE AE

P\ L L, Lg _

= —|— =+ —= - 1.8)
AP

Equation (1.8) is used when the Young's modulus of different sections is same. If the
Young's modulus of different sections is different, then total change in length of the bar is

given by,
dL:P[ L Lﬂ] AL

dL=dL, +dL,+dL,=

E\A, EjA,  EjA,
Problem 1.8, An axial pull of 35000 N is acting on a bar consisting of three lengths as
shown in Fig. 1.6 (b). If the Young’s modulus = 2.1 x 10" Nlmm?, determine :
(i) stresses in each seetion and

(ii) total extension of the bar,

Section 3

Section 2

35000 N - T 35000 N
4+— 2cmDIA 3cm DIA SemDIA —
¥

l

M= 20 cm —4— 25 crn —#e— 22 cm —M

Sol. Given :
Axial pull, P = 35000 N
Length of section 1, ; = 20 em =200 mm

Dia. of section 1, D, = 2cm =20 mm

. Area of section 1,

-
|

- % (202) = 100 1 mm?

Length of section 2,
Dia. of section 2,

s = 25 cm =250 mm
D, = 3cm =30 mm

[

-

Length of section 3, = 22 cm = 220 mm
Dia. of section 3, D, = 5cm=50mm

e W
|

L
A
L
o Area of section 2, A, = % (30%) = 225 m mm*
L
A

- Area of section 3, g = % (50%) = 625 r mm*

Young's modulus, E = 2.1 x 10* N/mm?.
(i) Stresses in each section

: ; Axial load
Stress in section 1, o, = Hoen Tt
P _ 35000 _ 2 _
i T 111.408 N/mm?. Ans.
P 35000
Stress in section 2, 0, = A 22Bxr - 49.5146 Nfmm?. Ans.
P _ 36000

= 17.825 N/mm?2, Ans.

Stress in section 3, o,
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(ii) Total extension of the bar
Using equation (1.8), we get
_P(L, L, Ly
“E\A A A
_ 35000 {200+ 250 220 ]
2.1x10° 100 2265xn 626x=x

35000
2.1x 10°

1.10.1. Principle of Superposition. When a number of loads are acting on a body,
the resulting strain, according to principle of superposition, will be the algebraic sum of strains
caused by individual loads.

While using this principle for an elastic body which is subjected to a number of direct
forces (tensile or compressive) at different sections along the length of the body, first the free
body diagram of individual section is drawn. Then the deformation of the each section is
obtained. The total deformation of the body will be then equal to the algebraic sum of
deformations of the individual sections.

Total extension

(6.366 + 3.536 + 1.120) = 0.183 mm. Ans.

Problem 1.12. A member ABCD is subjected to point loads P, P,, P;and P, as shown
in Fig. 1.11.

C
[ ;
A ~ ‘l‘
P, ¥, P, g 5 | P
- azimm —" +—1 1250 mm b

+—— 2500

l——— 120 em ——dte— 60 cm —se— 90.cm —b]
Fig. 1.11

Calculate the force P, necessary for equilibrium, if P, = 45 kN, Py = 450 kN and
P, = 130 kN. Determine the total elongation of the member. assuming t.’w modulus of
efusucrty to be 2.1 x 10° Nimm?,

Sol. Given :

Part AB : Area, A, = 625 mm* and
Length, L, =120 cm = 1200 mm

Part BC : Area, A, = 2500 mm? and
Length, L, = 60 cm = 600 mm

Part CD : Area, A, = 1250 mm? and
Length, Ly =90 cm = 900 mm

Value of E =2.1x 10° N\mm?,

Value of P, necessary for equilibrium
Resolving the forces on the rod along its axis (i.e., equating the forces acting towards
right to those acting towards left), we get

P,+P,=P,+P,
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But P, = 45 kN,
P, = 450 kN and P, = 130 kN
45 + 450 = P, +130 or P, = 495 - 130 = 365 kN

The force of 3656 kN acting at B is split into two forces of 45 kN and 320 kN (i.e., 3656 -
45 = 320 kN).

The force of 450 kN acting at C is split into two forces of 320 kN and 130 kN (i.e., 450 -
320 = 130 kN) as shown in Fig. 1.12.

From Fig. 1.12, it is clear that part AB is subjected to a tensile load of 45 kN, part BC
is subjected to a compressive load of 320 kN and part CD is subjected to a tensile load 130 kN,

A B
45 kN 45 kN
320 kN 320 kN
— -
2] c
130 kN 130 kN
e —
C D

Hence for part AB, there will be increase in length ; for part BC there will be decrease
in length and for part CD there will be increase in length.

Increase in length of AB
P 45000
TAE T e25x21%10°
=0.4114 mm
Decrease in length of BC

x 1200 (+* P =45 kN = 45000 N)

S Gy e SO (+ P =320 kN = 320000)
AE 2500%x 2.1 10
= 0.3657 mm

Inerease in length of CD

x »®
= 0.4457 mm

Total change in the length of member
=0.4114 - 0.3667 + 0.4457

(Taking +ve sign for increase in length and
—ve sign for decrease in length)
= 0.4914 mm (extension). Ans.
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1.19. ANALYSIS OF BARS OF COMPOSITE SECTIONS

A bar, made up of two or more bars of equal lengths but -
of different materials rigidly fixed with each other and behaving
as one unit for extension or compression when subjected to an

NN
WS

axial tensile or compressive loads, is called a composite bar. 78
For the composite bar the following two points are important : 2

1. The extension or compression in each bar is equal.
Hence deformation per unit length ie., strain in each bar is
equal.

NN

N

2. The total external load on the composite bar is equal lP
to the sum of the loads carried by each different material.

Fig. 1.15 shows a composite bar made up of two different
materials.

Let P = Total load on the eomposite bar,
L = Length of compogite bar and also length of bars of different materials,
A, = Area of cross-section of bar 1,
A, = Area of cross-section of bar 2,
E, = Young’s Modulus of bar 1,
E, = Young’s Modulus of bar 2,
P, = Load shared by bar 1,
P, = Load shared by bar 2,
a, = Stress induced in bar 1, and
a, = Stress induced in bar 2.

Now the total load on the composite bar is equal to the sum of the load carried by the
two bars.

e
]
+F]

P=P +P, i)
. Load ;:arried b)' bar 1
The st 1, f .
¢ streds in bar = "Area of cross-section of bar 1
P z
o, = ;l!; or P,=0,A, .aLif)
o ! P,
Similarly stress in bar 2, Gp= 2 or P,=0,A, i)
z
Substituting the values of P, and P, in equation (i), we get
P=0A, +0,A, wliv)

Since the ends of the two bars are rigidly connected, each bar will change in length by
the same amount. Also the length of each bar is same and hence the ratio of change in length
to the original length (i.e., strain) will be same for each bar.

Stress in bar 1 o

But in i 1 = - J’.
ub-yirain. lnBaryy Young's modulusof bar 1 E,
oy i ay
Similarly strain in bar 2, = v
E,
But strain in bar 1 = Strain in bar 2
G; Oa
cl - = -...tlJ
E, E, )

From equations (iv) and (v), the stresses o, and o, can be determined. By substituting
the values of 0, and 0, in equations (ii) and (ii£), the load carried by different materials may
be computed.
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Modular Ratio. The ratio of ﬂ i5 called the modular ratio of the first material to the

E,
second.

Problem 1.19. A steel rod of 3 em diameter is enclosed centrally in a hollotw copper tube
of external diameter 5 em and internal diameter of 4 cm. The composite bar is then subjected
to an axial pull of 45000 N. If the length of each bar is equal to 15 em, determine :

(i) The stresses in the rod and tube, and
(ii) Load carried by each bar.

Take E for steel = 2.1 x 10° Nimm?® and for copper = 1,1 x 10° Nimm?*,

[
™

Sol. Given :
Dia. of steel rod = 3 em = 30 mm -
- Area of steel rod, i
I
A, = " (30)* = 706.86 mm*
External dia. of copper tube 15cm
=5 cm =50 mm
Internal dia. of copper tube
=4 cm =40 mm *
. Area of copper tube,
A .= % [60? - 40%] mm? = 706.86 mm?
Axial pull on composite bar, P = 45000 N
Length of each bar, L=15¢em
Young's modulus for steel, E, =21 x 10° N/mm?

Young’s modulus for copper, E, = 1.1 x 10° N/mm?
(i) The stress in the rod and tube
Let o, = Stress in steel,
P_ = Load carried by steel rod,
O, = Stress in copper, and
P_= Load carried by copper tube.
Now strain in steel = Strain in copper

or

$§|$§ $§|éﬁ

&
E,
21x 10°

a 05 xo.= 19090,

¥ X0

T 1L1x1

Load
Area '’
Load on steel + Load on copper = Total load
o,xA,+o x4 =P
or 1909 o, x 706.86 + o_x 706.86 = 45000
or o, 1.909 x 706.86 + T06.86) = 45000
or 2066.256 0, = 45000
. _ 45000
. % = 205625
Substituting the value of g, in equation {i), we get
o 1.909 x 21.88 N/mm*

E )

= 41.77 N/'mm?. Ans,

Now stress = Load = Stress x Area

Copper

1

Lis
ARARANAN ?{“\“\ AN

SAAAARARARA RN AN
i
g

27/
LV

g

o

A
|l

&

P = 45000 N

Fig. 1.16

| a

=stmin]

-li)

(* Total load = P)

= 21,88 N'mm?, Ans.
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(i) Load carried by each bar
As load = Stress x Area
.. Load carried by steel rod,
P, =0,xA,
= 41.77 x 706.86 = 29525.6 N. Ans.
Load carried by copper Lube,
P. = 45000 - 29525.5
= 15474.56 N. Ans.
Problem 1.20, A compound tube consists of a steel tube 140 mm internal diameter
and 160 mm external diameter and an outer brass tube 160 mm internal diameter and
180 mm external diameter. The two tubes are of the same length. The compound tube carries

an axial load of 900 kN. Find the stresses and the load carried by each tube and the amount

it shortens. Length of each tube is 140 mm. Take E for steel as 2 x 10° Nimm? and for brass
as I x 1% Nimm?®.

Sol. Given :
Internal dia. of steel tube = 140 mm
External dia. of steel tube = 160 mm

n =
=. Area of steel tube, A= 7 (160° - 140°) = 4712.4 mm*
Internal dia. of brass tube = 160 mm

External dia. of brass tube = 180 mm

. Area of brass tube, Ay =7 (180° - 160%) = 5340.7 mm®
Axial load carried by compound tube,
P = 900 kN = 900 x 1000 = 900000 N

Length of each tube, L =140 mm

E for steel, E, =2 x 10° N'mm?

E for brass, E, =1 x 10° N'mm?

Let o, = Stress in steel in N/mm? and

o, = Stress in brass in N/mm?*

Now strain in steel = Strain in brass

% _ % [ ST = St’“"“]
Es E& E
_ E, _2x10° 2 (
o, = E, X0, = T 10F o, = 20, wlt)
Now load on steel + Load on brass = Total load
or o, xA +o,xA, = 900000 (** Load = Stress x Area)
or 20,x4712.4 + o, x 5340.7 = 900000 (v o,=20,)
or 14765.5 6, = 900000
o, = m"’; - 60.95 N/mm?. Ans.

Substituting the value of p, in equation (i), we get
o, = 2x60.95=121.9 N'mm?, Ans.

Load carried by brass tube

= Stress x Area

= 0, xA, =6095x 5340.7 N

= 325515 N = 325.6156 kN. Ans.
Load carried by steel tube

= 900 - 325.515 = 674.485 kN. Ans.
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Decrease in the length of the compound tube
Decrease in length of either of the tubes
Decrease in length of brass tube

Strain in brass tube x Original length
Oy, 60.95

]

x 140 = 0,0853 mm. Ans.

Problem 1.22. A load of 2 MN is applied on a short concrete column 500 mm x 500 mm.
The column is reinforced with four steel bars of 10 mm diameter, one in each corner. Find the

stresses in the concrete and steel bars. Take E for steel as 2.1 x 10° NImm? and for concrete as

1.4 x 107 Nimm?®,

Sol. Given : ¥
Total load applied, P =2MN=2x10°N \ /'.
Area of column = 500 x 500 = 250000 mm? Steel bars
Area of 4 steel bars, A = 43#%(10}3 = 314.169 mm? ﬁ
Area of concrete, A_ = Area of column
- Area of steel bars
= 250000 - 314.159 * aill OF 3
= 249685.841 mm?*
fe———— 500 mm ———
E for steel, E, = 2.1 x 10 N/mm* Imrr; i
E for concrete, E, = 1.4 x 10* N/mm?* R
Let o, = Stress in steel bar in N/mm?
6. = Stress in concrete in N/mm?
Now strain in steel = Strain in concrete
9, _9O. o . _ Stress
E, E, [ » Strain =
E 2.1x 10°
= ——txg,=——0,.=1ba
%= E 14 10° ‘ “'
Now load on steel + Load on concrete = Total load
o,A,+0.A =P (- Load = Stress x Area)
or 150, x 314.159 + 6, x 249685.841 = 2000000 (+ ©,=150,)
or 2543980, = 2000000
o, = 22543—9.? = 7.88 Nimm?. Ans.

Substituting this value in equation (i), we get
0,=16x7.86 = 117.92 N'mm?®. Ans.

THERMAL STRESSES

Thermal stresses are the stresses induced in a body due to change in temperature.
Thermal stresses are set up in a body, when the temperature of the body is raised or lowered
and the body is not allowed to expand or contract freely. But if the body is allowed to expand

or contract freely, no stresses will be set up in the body.
Consider a body which is heated to a certain temperature,
Let L = Original length of the body,
T = Rise in temperature,
E = Young’s Modulus,
a = Co-efficient of linear expansion,
dL = Extension of rod due to rise of temperature.
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If the rod is free to expand, then extension of the rod is given by
dL =o. T.L. A1.13)
This is shown in Fig. 1.23 (a) in which AB represents
the original length and BB’ represents the increase in length
due to temperature rise. Now suppose that an external (@)
compressive load, P is applied at B’ so that the rod is decreased in

A B

-

-

—— L ——pfe-aL ]

St e i e

its length from (L + «T'L) to L as shown in Figs. 1.23 (b) and (c). e
D . : Uop
Then compressive strain = = a:o;;r; le;ith ) 7 e
ginal len P
a.T.L aTL
= = = (L. A B
TR e Tiaad . ?
fc)
St ]
But TR -E — L —
Strain Fig. 1.23

Stress = Strain x E=a.TE
And load or thrust on the rod = Stress x Area = o.T.E x A

If the ends of the body are fixed to rigid supports, so that its expansion is prevented,
then compressive stress and strain will be set up in the rod. These stresses and strains are
known as thermal stresses and thermal strain.

Extension prevented

.. Thermal strain, e=

Original length
dl. o.T.L
=—'L—=——I——=u_T' il 1.14)
And thermal stress, o = Thermal strain x E
=a.TE. it 1. 15)

Thermal stress is also known as temperature stress.
And thermal strain is also known as tem perature strain.

1.14.1. Stress and Strain when the Supports Yield. If the supports yield by an
amount equal to 8, then the actual expansion
= Expansion due to rise in temperature - §

=a.T.L - 8.
) Actual expansion (a.T.L-38)
A = =
Al strki Original length 7
And actual stress = Actual strain x
=wxgl ALIG)

Problem 1.28. A rod is 2 m long at a temperature of 10°C. Find the expansion of the
rod, when the temperature is raised to 80°C. If this expansion is prevented, find the stress
indueed in the material of the rod. Take E = 1.0 x 10° MN | m? and = 0.000012 per degree centigrade.

Sol. Given :

Length of rod, L =2m=200cm
Initial temperature, T, =10°C
Final temperature, T, =80°C
~ Rise in temperature, T = T2 - fi"'1 = 80° - 10° = T0°C
Young’s Modulus, E =1.0 x 10° MN/m?
= 1.0 x 10° x 10° N/m? (- M =10

= 1.0 x 10" N/m?
Co-efficient of linear expansion, « = 0.000012
(i) The expansion of the rod due to temperature rise is given by equation (1.13).
*. Expansion of the rod =aT.L

= 0.000012 x 70 x 200

=0.168 em. Ans.
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(ii) The stress in the material of the rod if expansion is prevented is given by equation (1.15).

- Thermal stress, o=a.T.E
= 0.000012 x 70 x 1.0 x 10"" N/m?

= 84 x 10° N/m? = 84 N‘'mm?. Ans. (* 10° N/m? = 1 N'mm?®)

Problem 1.29. A steel rod of 3 em diameter and 5 m long is connected to two grips and
the rod is maintained at a temperature of 95°C. Determine the stress and pull exerted when the

temperature falls to 30°C, if
(i) the ends do not yield, and
(i) the ends yield by 0.12 cm.
Take E = 2 x 10° MN/m® and a = 12 x 109°C.
Sol. Given :
Dia. of the rod, d=3em =30 mm

~. Area of the rod, A:—Ex&ﬂ’:ﬁﬁnmm’

Length of the rod, L =5m = 5000 mm
Initial temperature, T, = 95°C
Final temperature, 7,=30C

. Fall in temperature, T=T,-T,=95-30=65°C
Modulus of elasticity, E = 2 x 10®* MN/m*

=2 x 10% x 10" N/m*

=2 x 10" N/m?

Co-efficient of linear expansion, a = 12 x 10°%°C.
(i) When the ends do not yield
The stress is given by equation (1.15).
Stress = a.T.E = 12 x 107% x 65 x 2 x 10! N/m?*

= 156 x 10®* N/m? or 156 N/mm? (tensile). Ans.

Pull in the rod = Stress x Area
= 156 x 225 n = 110269.9 N. Ans.
(£i) When the ends yield by 0.12 cm
8§=012em = 1.2 mm
The stress when the ends yield is given by equation (1.16).
(. T.L-9)
L x E
(12 x 10 x 65 x 5000 - 1.2)

5000

- 39-12) 5, 10°=108 NNmm®. Ans.
5000

Pull in the rod = Stress x Area
= 108 x 225 n = 76340.7 N. Ans.

Stress =

x 2 x 10* N/mm*
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2.5.1. Volumetric Strain of na

Rectangular Bar which is Subjected to an i / I‘d
P

Axial Load P in the Direction of its Length.
Consider a rectangular bar of length L, width b i
and depth d which is subjected Lo an axial load P L _w
in the direction of its length as shown in Fig. 2.2, —_— —Ha/b
Let ol = Change in length,
&4 = Change in width, and
8d = Change in depth.
Final length of the bar =L +3L

Final width of the bar =b+5b

Final depth of the bar =d + dd

Now original volume of the bar, V = L.b.d

Final volume =(L + SL)}b + &b)d + &)

= L.b.d. + bddL + Lbdd + Ld.8b
(Ignoring products of small quantities)
Change in volume,
3V = Final volume - Original volume
= (Lbd + bd3L + Lbdd + Lddb) — Lbd
= bd8L + Lbdd + Lddb
Volumetric strain,

5V
“ =V
_ bdbL + Lbdd + Ldbb
B Lbd
= §.I.'.. + i"i + .j.H_’.. (<2 4)
L d b o
3L
But T Longitudinal strain and sd—dur% are lateral strains.
Substituting these values in the above equation, we get
e, = Longitudinal strain + 2 x Lateral strain i)

From equation (2.3A), we have
Lateral strain = — u x Longitudinal strain.
Substituting the value of lateral strain in equation (i), we get
e = Longitudinal strain - 2 x u longitudinal strain

= Longitudinal strain (1 — 2u)

=%[l-2m il 354
Problem 2.4. A steel bar 300 mm long, 50 mm wide and 40 mm thick is subjected to a
pull of 300 kN in the direction of its length. Determine the change in volume. Take E = 2 x 10°
Nimm? and p = 0.25.
Sol. Given :

Length, L = 300 mm

Width, b = 50 mm

Thickness, t = 40 mm

Pull, P = 300kN=300x10°N
Value of E = 2x10° N'mm?

Value of = 025
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Original volume, V = Lxbxt
= 300 x 50 x 40 mm? = 600000 mm?
The longitudinal strain (i.e., the strain in the direction of load) is given by
dL _ Stress in the direction of load
L E
But stress in the direction of load

P P

Area bxt

_ 300x10”
- 50x40

dL 150
PRETT

Now volumetric strain is given by equation (2.5) as

e, = % (1 —2}1]
= 0.00075 (1 - 2 x 0.25) = 0.000375

= 150 N/mm?

Let 8V = Change in volume. Then av represents volumetric strain.

v
av
sl 0.000375
or dV = 0000375 x V
= 0.000375 x 600000 = 225 mm?. Ans.

When a body is subjected to the mutually perpendicular like and equal direct stresses,
the ratio of direct stress to the corresponding volumetric strain is found to be constant for a
given malerial when the deformation is within a certain limit. This ratio is known as bulk
modulus and is usually denoted by K. Mathematically bulk modulus is given by

K= Direct stress __o —
Volumetric strain [ dv ) ------ J
Vv

2.8. EXPRESSION FOR YOUNG'S MODULUS IN TERMS OF BULK MODULUS

Fig. 2.7 shows acube A B C D E F G H which is subjected to three mutually perpendicular
tensile stresses of equal intensity.

Let L = Length of cube
dL = Change in length of the cube

E = Young's modulus of the material of the cube =
o = Tensile stress acting on the faces € E
p = Poisson’s ratio.

Then volume of cube, V = L3 A ;

Now let us consider the strain of one of the sides of 3§ ; =T =
the cube (say AB) under the action of the three mutually HE fousaecsss G
perpendicular stresses. This side will suffer the following P
three strains : q A
1. Strain of AB due to stresses on the faces AEHD 5

and BFGC. This strain is tensile and is equal to % Fig. 2,
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2, Strain of AB due to stresses on the faces AEFB and DHGC. This is compressive

lateral strain and is equal to - p %
3. Strain of AB due to stresses on the faces ABCD and EFGH. This is also compressive

: : o
Iateral strain and is equal to - p E

Henee the total strain of AB is given by

dl. o a g o

TN gr iy 5
Now original volume of cube, V = L? wlif)
If dL is the change in length, then dV is the change in volume.
Differentiating equation (ii), with respect to L,

dV = 3L* x dL i)

Dividing equation ({ii) by equation (i), we get
dV _8L* xdL _3dL

v L2 L

(1-2u) i)

Substituting the value of % from equation (i), in the above equation, we get

dV 3o
—_—a—(1-2u)
V E g
From equation (2.9), bulk modulus is given by
- - . dV %0,
K= av —3_0‘1-2'” [ v -E“. 2[1}]
vV E
E ;
=z — 210
3(1-2p)
or E=3K(1-2u) 4211
. : N . . . 3K -E
From equation (2.11), the expression for Poisson’s ratio (ju) is obtained as p = Tak

Problem 2.8, For a material, Young’s modulus is given as 1.2 x 10° N/mm?* and
Poisson’s ratio 4. Calculate the Bulk modulus.
Sol. Given : Young's modulus, E = 1.2 x 10° N/mm?

1
Poisson's ratio, b=
Let K = Bulk modulus

Using equation (2.10),
E _ 12x10° 1.2x10°

3(1-2p) 3("EJ -
4 2

K =

_ 2x12x10°
3
Problem 2.9. A bar of 30 mm diameter is subjected to a pull of 60 kN. The measured
extension on gauge length of 200 mm iz 0.1 mm and change in diameter is 0.004 mm. Calculate :
{i) Young’s modulus, (ii} Poisson's ratio and
(iii) Bulk modulus.

=0.8 x 108 N/mm?, Ans,
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Sol. Given ;: Din. of bar, d = 30 mm

Area of bar, A = % (30)* = 2251 mm?
Pull, P = 60 kN =60 x 1000 N
Gauge length, L = 200 mm
Extension, 8L = 0.1 mm
Change in dia., &d = 0.004 mm
(1) Young's modulus (E)
Tensile stress, o = -E= o 84.87 N/mm?
Longitudinal strain _ 8L _01 0005

L 200
Tensile stress
~ Young’s modulus, E = Tangitudinel strain
a 034.37 = 16.975 x 10¢ N/mm?

= 18975 x 10®* N'mm?, Ans.
(i£) Poisson’s ratio (p)
Poisson’s ratio is given by equation (2.3) as

__ Lateral strain
"~ Longitudinal strain

)

Poisson’s ratio {)

&L
= + Lateral strain = —
0.0006 [ s d)
[0.004)
30 /_0.000133
= 70,0005 _ 00005 - 0.268. Ans.
(iii) Bulk modulus (K)
Using equation (2.10), we get
E 1.6975 x 10°

K = 30 2w " 30-0266x2

1.209 x 10° N'mm?2. Ans.

PRINCIPLE OF COMPLEMENTARY SHEAR STRESSES

It states that a set of shear stresses across a plane is R
always accompanied by a set of balancing shear stresses (i.e., D — ¢
of the same intensity) across the plane and normal to it.

Proof. Fig. 2.8 shows a rectangular block ABCD, "T l'
subjected to a set of shear stresses of intensity 1 on the faces

AB and CD. Let the thickness of the block normal to the plane A —_— B
of the paper is unity.
The force acting on face AB
= Stress x Area
=txABx1=1AB
Similarly force acting on face CD
=txCDx1=1tCD
=TAB (-~ CD=AB)
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The forces acting on the faces AB and CD are equal and opposite and hence these forces
will form a couple,

The moment of this couple = Force x Perpendicular distance
=T.AB x AD wli)
If the bloek is in equilibrium, there must be a restoring couple whose moment must be

equal to the moment given by equation (i). Let the shear stress of intensity ' is set up on the
faces AD and CB.

The force acting on face AD =t x AD x 1 = 7. AD

The force acting on face BC = U x BC x 1 = vBC = . AD (~» BC=AD)

As the foree acting on faces AD and BC are equal and opposite, these forces also forms
a couple.

Moment of this couple = Force x Distance = U. AD x AB vl )

For the equilibrium of the block, the moments of couples given by equations (i) and (if)
should be equal

TtABxAD =7, ADxABort=71.

The above equation proves that a set of shear stresses is always accompanied by a
transverse set of shear streases ol the same intensity.

The stress t is known as complementary shear and the two stresses (1 and v') at right

angles together constitute a state of simple shear. The direction of the shear stresses on the
block are either both towards or both away from a corner.

In Fig. 2.8, as a result of two couples, formed by the shear forces, the dia;r;al BD will
be subjected to tension and the diagonal AB will be subjected to compression.

RELATIONSHIP BETWEEN MODULUS OF ELASTICITY AND MODULUS OF
RIGIDITY

We have seen in the last article that when a square block of unit thickness is subjected
to a set of shear stresses of magnitude 1 on the faces AB, CD and the faces AD and CB, then
the diagonal strain due to shear stress t is given by equation (2.14) as
B3
E
From equation (2.15) also we have total tensile strain in dingonal BD

Total tensile strain along diagonal BD = — (1 + p)

1 . 1 _ Shear stress [ _Shear stress _ o
=3 shear strain = 3 x 5 [ R modulus of rigidity = C]
= -21— x % (*+ Shear stress = 1)
-. Equating the two tensile strain along diagonal BD, we get
T 1 =
z (1+pl= 2%0
T 1 ; ;
or E (1+p)= 2C (Cancelling t from both sides)
E=2C(1 +p) WA 2.16)
E
= U207
or c 20+ 7
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Problem 2.10. Determine the Poisson’s ratio and bulk modulus of a material, for which
Young's modulus is 1.2 x 10° N/mm? and modulus of rigidity is 4.8 x 10* N/mm?*.

Sol. Given :

Young’s modulus, E =12 x 10° N'mm*

Modulus of rigidity, C = 4.8 x 10* N'mm?

Let the Poisson's ratio =y

Using equation (2.16), we get

E =2C (1 +p)
or 1.2x10° =2 x4.8x 10*(1 +p)
1.2 x 10°
= — =], — 2 B - 1.U0= . Ans,
or (1+p) 2% 4.8 107 1.250r p=125-1.0=025 n
Bulk modulus is given by equation (2.10) as
E ; i
K L %20 (' p=0.25)

“301-20) " 31-025x2)
= 8 x 107 N/mm?2. Ans.

STRAIN ENERGY

Whenever a body is strained, the energy is absorbed in the body. The energy, which is
absorbed in the body due to straining effect is known as strain energy. The straining effect
may be due to gradually applied load or suddenly applied load or load with impact. Hence the
strain energy will be stored in the body when the load is applied gradually or suddenly or
with an impact. The strain energy stored in the body is equal to the work done by the applied
load in stretching the body.

Before deriving the expressions for the strain energy stored in a body due to gradually
applied load or suddenly applied load or load with an impact, the following terms will be defined:

1. Resilience

2. Proof resilience, and

3. Modulus of resilience.

4.2.1. Resilience. The total strain energy stored in a body is commonly known as
resilience. Whenever the straining force is removed from the strained body, the body is capa-
ble of doing work. Hence the resilience is also defined as the capacity of a strained body for
doing work on the removal of the straining foree.

4.2.2. Proof Resilience. The maximum strain energy, stored in a body, is known as
proof resilience. The strain energy stored in the body will be maximum when the body is
stressed upto elastic limit. Hence the proof resilience is the quantity of strain energy stored
in a body when strained upto elastic limit.

1.2.3. Modulus of Resilience. It is defined as the proof resilience of a material per
unit volume. It is an important property of a material. Mathematically,
Proof resilience

Volume of the body

Modulus of resilience =
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EXPRESSION FOR STRAIN ENERGY STORED IN A BODY WHEN THE LOAD
IS APPLIED GRADUALLY

In Art. 4.1, we have mentioned that the strain energy stored in a body is equal to the
work done by the applied load in stretching the body.
Fig. 4.1 shows load extension diagram of a body under tensile test upto elastic limit.

The tensile load P increases gradually from zero to the value of P and the extension of the
body increases from zero to the value of x.

The load P performs work in stretching the body. 4
This work will be stored in the body as strain energy //
which is recoverable after the load P is removed. .| I— ! M
Let P = Gradually applied load, A
x = Extension of the body,
A = Cross-sectional area, p
L = Length of the body, -
V = Volume of the body, L
E = Young's modulus, TJ' : (| "
[/ = Strain energy stored in the body, and Ek 5 o
a = Streas induced in the body. — Extension
Now work done by the load = Area of load ex- -
tension curve {(Shaded area in Fig. 4.1) Fig. 4.1
= Area of triangle ONM
= % x P xx vl )
But load, P =Stresa x Area=0x A
. Extension ; ;
i = i '+ Strain = ——— . Extension = Strain x L
and extension, x = Strain x Length Length ]
Stress , Stness]
- -+ Strain =
==F x L [ n E
=%KL. LA4.1)
Substituting the values of P and x in equation (1}, we get
1 o 1 o?
Work done by the load —2x0xAxExL=§ExAxL
ol
:5-:-:1’ (> Volume V=Ax L)

E
But the work done by the load in stretching the body is equal to the strain energy
stored in the body,
Energy stored in the body,
2
Uag—ExV. (4.2)

Proof resilience. The maximum energy stored in the body without permanent defor-
mation (i.e., upto elastic limit) is known as proof resilience. Hence if in equation (4.2), the
stress o is taken at the elastic limit, we will get proof resilience.

a2

Proof resilience = Z_E x Volume a4 3)
where o* = Stress at the elastic limit.
Modulus of resilience = Strain energy per unit volume
8
Total strain energy  2f v _ o’ ,
& Volume =TV " 2E A
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EXPRESSION FOR STRAIN ENERGY STORED IN A BODY WHEN THE LOAD
IS APPLIED SUDDENLY

When the load is applied suddenly to a body, the load is constant throughout the proc-
ess of the deformation of the body.

Consider a bar subjected to a sudden load.
Let P Load applied suddenly,
Length of the bar,
Area of the eross-section,
Volume of the bar = A x L,
Young's modulus,
Extension of the bar,
Stress induced by the suddenly applied load, and
Strain energy stored.

As the load is applied suddenly, the load P is constant when the extension of the bar
takes place.

Work done by the load = Load x Extension = P x x.

The maximum strain energy stored (i.e., energy stored upto elastic limit) in a body is

given by

SERE RN
i wmww uwnu

2
g
- — v
U 2 x Volume of the body

02

:ﬁxAxL. (v Volume=A x L)
Equating the strain energy stored in the body to the work done, we get
2
;—ExAxL=Pxx=Px%gL, [ Frnmequatiunm.lj,x:%x[.]
Cancelling oxL from both sides, we get
A P
. =P or d=2xI. 4.5)

From the above equation it is clear that the maximum stress induced due to suddenly
applied load is twice the stress induced when the same load is applied gradually.

After obtaining the value of stress (0), the values of extension (x) and the strain energy
stored in the body may be calculated easily.
Problem 4.1. A tensile load of 60 kN is gradually applied to a circular bar of 4 em
diameter and 5 m long. If the value of E = 2.0 x 10° NImm?, determine :
(i) stretch in the rod,
(it) stress in the rod,
(iit) strain energy absorbed by the rod.
Sol. Given :
Gradually applied load,
P =60 kN =60 x 1000 N

Dia. of rod, d =4 cm =40 mm

n ;
- Area, ﬁ:;xfiﬂ‘:'!ﬂﬂa'mmz
Length of rod, L =5 m =500 em = 5000 mm

Volume of rod, V= A x L = 400 n x 5000 = 2 x 10 n mm*
Young’s modulus, E = 2 x 10° N/mm?Z
Let = streteh or extension in the rod,
stress in the rod, and
strain energy absorbed by the rod.

x
o
U
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Load P 60000 4
Arca - A - 4007 = 47.746 N/mm?®, Ans.
The stretch or extension is given by equation (4.1),
‘= le_ 47.746
T BT st

The strain energy absorbed by the rod is given by equation (4.2),
o’ 47.476°
& Ve DU
2F 2x2x10°
Problem 4.2. If in problem 4.1, the tensile load of 60 kN is applied suddenly determine:
(i) maximum instantaneous stress induced,
({i) instantaneous clongation in the rod, and
(iii) strain energy absorbed in the rod.
Sol. Given :

The data given in problem 4.1 is d = 40 mm, Area = 400 x mm?, L = 5000 mm, Volume
=2 x 105 n mm?, E = 2 x 10° N/mm? and suddenly applied load, P = 60000 N.

(i} Maximum instantaneous gtress induced
Using equation (4.5),

Now stress, 0 =

% 5000 = 1. 19 mm. Ans

U= % 2 x 10f = 36810 N-mm = 35,81 N-m. Ans.

P 60000
C=2x % =2 x 200m

(ii) Instantaneous elongation in the rod
Let x = Instantancous elongation

o ¥
Then .r=—'.-¢l'4-=ﬂl'5493

E 2% 10°
=238 mm. Ans.
(iii) Strain energy is given by,

a? 95.493°
U= *V = 2xzx10°
= 143.238 N-m. Ans.
Problem 4.1 Caleulate instantaneous stress produced in a bar 10 em? in area and 3 m
long by the sudden application of a tensile load of unknown magnitude, if the extension of the
bar due to suddenly applied load is 1.5 mm. Also determine the suddenly applied load. Take

E =2 x 10° N/mm?.

= 96.483 N/mm?2. Ans.

x 5000 [see equation (4.1))

x 2 x 10% n = 143238 N-mm

Sol, Given ;
Area of bar, A = 10 cm? = 1000 mm?
Length of bar, L=3m =3000 mm
Extension due to suddenly applied load,
xr= 156 mm
Young's modulus, E = 2 x 10° N/'mm?,
Let o = Instantaneous stress due to sudden load, and

P = Suddenly applied load.
The extension x is given by equation (4.1),

a a
I—EKL or 1.5—2:‘105 x 3000
= 1.5x2x 10°

= 100 N/'mm?. Ans.
3000
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Suddenly applied load
The instantaneous stress produced by a sudden load is given by equation (4.5) as

P
2:-:—‘.-1-— or 100=2x 1000

1 1
P = M = 50000 N = 50 kN. Ans.
Problem 4.4. A steel rod is 2 m long and 50 mm in diameter. An axial pull of 100 kN is
suddenly applied to the rod. Calculate the instantaneous stress induced and also the instanta-
neous elongation produced in the rod. Take E = 200 GNIm?®.

g

Sol. Given :

Length, L = 2m =2 x 1000 = 2000 mm
Diameter, d = 50 mm

. Area, = E % 507 = 626 1 mm?

Suddenly applied load,

100 kN = 100 x 1000 N

200 GN/m* = 200 x 10 N/m? (++ G=Giga=109

8

= % N/mm? (- 1 m= 1000 mm .. m? = 10° mm?)

200 x 10* N/mm?

Using equation (4.5) for suddenly applied load,
P

gxs wn ANXI00 Lo o rorse R, Abe
A 625 n

Elongation

P 101.86

E Kl 200 x 10?

P
Value of E

a

Let dlL
Then dL

x 2000 = 1.0188 mm., Ans,

4.5, EXPRESSION FOR STRAIN ENERGY STORED IIIAE IR I7 AT IENs RNV INIIIE
INA BODY WHEN THE LOAD IS APPLIED WITH Vertical
IMPACT tod —p Load

The load dropped from a certain height before the T ;//‘c
load commences to stretch the bar is a case of a load applied 7 o
with impact. Consider a vertical rod fixed at the upper end
and having a collar at the lower end as shown in Fig. 4.4. ¥

Let the load be dropped from a height on the collar. Due to
this impact load, there will be some extension in the rod. n

Let P = Load dropped (i.e., load applied with impact)
L = Length of the rod, et
A = Cross-sectional area of the rod, L
V = Volume of rod = A x L,
h = Height through which load is dropped, 1""_

8L = Extension of the rod due to load P, SO S S— -

E = Modulus of elasticity of the material of rod, L _______________________ j
o = Stress induced in the rod due to impact load. Fig. 4.4

The strain in the bar is given by,

Le.,

x L wdd.6)
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Work done by the load = Load x Distance moved

= Pth + SL] el

The strain energy stored by the rod,
o* o? .
_ESV—EXAL T

Equating the work done by the load to the strain energy stored, we get

Plh+ 8l = oo AL
jJ=—_.A
* 2E

1)1 (- se=5t)
or P[h+—E.L}—2—E.AL i EL-—E.L

G.i

o
or Ph+P.E.L-2E.AL

2
or S _AL-P.Z L-Ph=0
2E E

Multiplying by Eﬁﬁ to both sides, we get
o 2E 2E
2_P o - —_— =
o I'E'LxA,L Ph.AL 0
2p - 2PEh
A A.L
The above equation is a quadratic equation in ‘c’,

=0,

or o

2P, [zf]*+4 2PEh
A YA AL [ roots b EB-dac
2x1 Za

H

4P 8.PER _P [f}" 2PEh
aA? 4.AL AT\A) AL
ﬁ]ﬂﬂ
AL

+

{Neglecting — ve root)

=% v 2% =»|v
2

+

™|

ey
+

%

e

e

|

|

:

P.L
After knowing the value of ‘a’, the strain energy can be obtained.

[1+ 1+2A'Eh] o4, T)

(i) If 8L is very small in comparison with h.

The work done by load =P. h

Equating the work done by the load to the strain energy stored in the rod, we get
2

2E.P.h 2EPh

_—A.L and o= —A.L (4.8
(ti) In equation (4.7), if h = 0, we get

P P 2P
G=I‘1+‘“+D)=I“+”-T

which is the case of suddenly applied load.
Once the stress @ is known, the corresponding instantaneous extension (8L) and the
strain energy (U)) can be obtained.
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Problem 4.9. A weight of 10 kN falls by 30 mm on a collar rigidly attached to a vertical
bar 4 m long and 1000 mm? in section. Find the instantancous expansion of the bar. Take
E = 210 GPa. Derive the formula you use.

Sol. Given :

Falling weight, P = 10 kN =10,000 N

Falling height, h = 30 mm
Length of bar, L = 4m=4000 mm
Area of bar, A = 1000 mm?
Value of E = 210 GPa = 210 x 10° N/m?
(*» G = Giga = 10" and Pa = Pascal = 1 N/m?¥)
9
=&:—£_‘E (+* 1m=1000 mm and m* = 10° mm?)
10" mm
= 210 x 10° N/mm? = 2.1 x 10° N/mm?
Let dl = Instantaneous elongation due to falling weight
o = Instantaneous stress produced due to falling weight

Using equation (4.7), we get

£ 1+ l+—2mh
=2 PxL

1000 10000 x 4000

= 10 (1+/1+315) = 10 (1+V316)

= 10 x 18.77 = 187.7 N/mm?*

10000[ \( 2x 2.1 10° x 1000 x 30
= 1+,/1+

Now E = _&_E:L or E;E
Strain [LSL] L E
L
o 187.7 x 4000
8L = E x L= 21x10° = 3570 mm. Ans,

Problem 4.10. A load of 100 N falls through a height of 2 cm onto a collar rigidly
attached to the lower end of a vertical bar 1.5 m long and of 1.5 em? cross-sectional area. The
upper end of the vertical bar is fixed.

Determine :

(i) maximum instantaneous stress induced in the vertical bar,

(ii) maximum instantaneous elongation, and

(iii) strain energy stored in the vertical rod.

Take E =2 x 10° Nimm?®.

Sol. Given :
Impact load, P = 100N
Height through which load falls,
h = 2em =20 mm
Length of bar, L = L5m= 1500 mm
Area of bar, A = 15em? = 1.6 x 100 mm? = 150 mm*
s Volume, V = A x L =150 x 1500 = 225000 mm*
Modulus of elasticity,E = 2 x 10° N/mm?*
Let ¢ = Maximum instantaneous stress induced in the vertical bar,
8L = Maximum elongation, and
U/ = Strain energy stored.
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i 2AER 6
o _[” 1+_H] _100( [ 2x150x2x10° x20
A P.L 150 100 x 1500
= %H+1jl+ 8000) = 60.23 N/mm?. Ans.

({i)Using equation (4.6),

(] 60.23 x 1500

8L = EX LEW = 0.4562 mm. Ans.

(iii)Strain energy is given by,

o” 60.23*

U= — x 225000 = 2045 N-mm

xV=
2E 2x2x10°
= 2,045 N-m. Ans.
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Thin inder an herical 1 under i 1 Flui essure
Thin Cylinder:-

The vessels such as boilers, compressed air receivers etc., are of cylindrical and spherical
forms. These vessels are generally used for storing fluids (liquid or gas) under pressure. The walls
of such vessels are thin as compared to their diameters. If the thickness of the wall of the cylindrical

1

vessel is less than 1—15 to 20 of its internal diameter, the cylindrical vessel is known as a thin

eylinder. In case of thin cylinders, the stress distribution is assumed uniform over the thickness
of the wall.

Thin Cylindrical vessel subjected to internal Fluid pressure:-

Fig. 17.1 shows a thin cylindrical vessel in which a fluid under pressure is stored.

[i Vff////f/////f/////////f///// !
I R K

d 2:: Fluid under pressure p ::;
/W EEEREEEE R S’
I rTIIIIIE S TTIIIIIIE I III IS

+——
Fig. 17.1

Let d = Internal diameter of the thin cylinder
t = Thickness of the wall of the cylinder
p = Internal pressure of the fluid
L = Length of the cylinder.
On account of the internal pressure p, the cylindrical vessel may fail by splitting up in any
one of the two ways as shown in Fig. 17.2 (a) and 17.2 (b).

The forces, due to pressure of the fluid acting vertically upwards and downwards on the
thin cylinder, tend to burst the cylinder as shown in Fig. 17.2 (a).

The forces, due to pressure of the fluid, acting at the ends of the thin cylinder, tend to burst
the thin eylinder as shown in Fig. 17.2 (b).

~‘. TF'ressura force m

’
’
Ll
#*
-

(a)
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Cross-section perpendicular
/ to the axis of vessel

N e e e el

Stresses in thin cylindrical vessel subjected to internal Fluid pressure:-

When a thin cylindrical vessel is subjected to internal fluid pressure, the stresses in the
wall of the cylinder on the cross-section along the axis and on the cross-section perpendicular to
the axis are set up. These stresses are tensile and are known as :

1. Circumferential stress (or hoop stress) and

2. Longitudinal stress.

The name of the stress is given according to the direction in which the stress is acting. The
stress acting along the circumference of the cylinder is called circumferential stress whereas the
stress acting along the length of the cylinder (i.e., in the longitudinal direction) is known as
longitudinal stress. The circumferential stress is also known as hoop stress. The stress set upin
Fig. 17.2 (a) is circumferential stress whereas the stress set up in Fig. 17.2 (b) is longitudinal
stress.

Expression for Circumferential stress or Hoop Stress:-

Consider a thin cylindrical vessel subjected to an internal fluid pressure. The circumferen-
tial stress will be set up in the material of the cylinder, if the bursting of the cylinder takes place
as shown in Fig. 17.3 (a).

The expression for hoop stress or circumferential stress (o, ) is obtained as given below.
Let p = Internal pressure of fluid
d = Internal diameter of the cylinder
t = Thickness of the wall of the cylinder
6, = Circumferential or hoop stress in the material.

The bursting will take place if the force due to fluid pressure is more than the resisting
force due to circumferential stress set up in the material. In the limiting case, the two forces

should be equal.
Force due to fluid pressure = p x Area on which p is acting
=p¥idxL) )
(~+ pisacting on projected aread x L)
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Force due to circumferential stress
=0, x Area on which ¢, is acting
=o,x(Lxt+Lxt)
=0,x2Lt=20, x L xt wolti)
Equating (i) and (ii), we get
pxdemEﬂle % t

0, = % (cancelling L) {12)

This stress is tensile as shown in Fig. 17.3 (b).

Expression for Longitudinal Stress:-

Consider a thin cylindrical vessel subjected to internal fluid pressure. The longitudinal
stress will be set up in the material of the eylinder, if the bursting of the cylinder takes place
along the section AB of Fig. 17.4 (a).

The longitudinal stress (0,) developed in the material is obtained as:
Let p = Internal pressure of fluid stored in thin cylinder
d = Internal diameter of cylinder
t = Thickness of the cylinder
o, = Longitudinal stress in the material.

The bursting will take place if the force due to fluid pressure acting on the ends of the
eylinder is more than the resisting force due to longitudinal stress (,) developed in the material
as shown in Fig. 17.4 (b). In the limiting case, both the forces should be equal.

Force due to fluid pressure = p x Area on which p is acting

n
= — d?
P"‘4

Resisting force = 6, x Area on which ¢, is acting
=0, x nd x t
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» Hence in the limiting case
Force due to fluid pressure = Resisting force

L
p#;cf‘=02ﬁtndxl

T .2
. o e _pd j—
. 27 mdxt 4t

The stress g, is also tensile.

Equation (17.2) can be written as

_ A =£]
C:=oxu 2 17 o

or Longitudinal stress = Half of circumferential stress.

This also means that circumferential stress (o) is two times the longitudinal stress (g,).
Hence in the material of the cylinder the permissible stress should be less than the circumferen-
tial stress. Or in other words, the circumferential stress should not be greater than the permissible
stress.

Maximum shear stress. At any point in the material of the cylindrical shell, there are

two principal stresses, namely a circumferential stress of magnitude ¢, = %c:- acting circamfer-

entially and a longitudinal stress of magnitude o, = £d acting parallel to the axis of the shell.

4
These two stresses are tensile and perpendicular to eacf‘u other.
e pd
. : _G1-9; _ 2t 4 _PpP2
5 Maximum shear stress Twar=" g 5 >

Note. (i) If the thickness of the thin cylinder is to be determined then equation (17.1) should be

used.

(i) If maximum permissible stress in the material is given. This stress should be taken circumfer-

entinl stress (o).

(iii) While using equations (17.1) and (17.2), the units of p, o, and 0, should be same. They should be

expressed either in N/mm? or N/m?. Also the units of d and ¢ should be same. They may be in metre (m) or
millimetre (mm).
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Problem 17.1, A eylindrical pipe of diameter 1.6 m and thickness 1.5 cm is subjected to
an internal fluid pressure of 1.2 N/mm?. Determine ;

(i) Longitudinal stress developed in the pipe, and
(if) Circumferential stress developed in the pipe.

Sol. Given :
Dia. of pipe, d=156m
Thickness, t=15cem=15x102m

Internal fluid pressure, p = 1.2 N/mm?*

-2 l
As the ratio A= L%y = 1 . which iz less than —, hence this is a case of thin
. d 1.6 100 20
cylinder.

Here unit of pressure (p) is in N/mm?, Hence the unit of 6, and a,, will also be in N/mm?.
(i) The longitudinal stress (g,) is given by equation (17.2) as,
pxd
52 B m
1.2x 1.5 0 S e
= Ix1bx107 ~ 0 Nmms Ase.
(ii) The circumferential stress (o) is given by equation (17.1) as
pd
o m
- 1.2x 1.0
T 2x1.5x107*

= 60 N/mm2. Ans,

Problem 17.2. A eylinder of internal diameter 2.5 m and of thickness 5 cm contains a
gas. If the tensile stress in the material is not to exceed 80 N/mm?®, determine the internal

pressure of the gas.
Sol. Given :
Internal dia. of cylinder, d=256m
Thickness of cylinder, t=5em=5x%x102m
Maximum permissible stress = 80 N/mm*

As maximum permissible stress is given. Hence this should be equal to circumferential
stress(o,).

We know that the circumferential stress should not be greater than the maximum permis-
sible stress. Hence take circumferential stress equal to maximum permissible stress.

o, = 80 N/mm?

Let p = Internal pressure of the gas

Using equation (17.1),

o, 2x5x107x80
d 2.5

(Here unit of ¢, is in N/mm?,

hence unit of p will also be in N/mm?)
= 3.2 N/mm?2. Ans.
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Problem 17.4. A thin eylinder of internal diameter 1.25 m contains a fluid at an internal
pressure of 2 Nimm?®. Determine the maximum thickness of the cylinder if :

(i) The longitudinal stress is not to exceed 30 N/mm?,
(ii) The circumferential stress is not to exceed 45 N/mm?®.
Sol. Given :

Internal dia. of cylinder, d=125m
Internal pressure of fluid, p =2 N/mm?
Longitudinal stress, o, = 30 N/mm?*
Circumferential stress, g, =46 N/mm?
Using equation (17.1),

O, =0,

_pxd 2x125
t= %o, 2x4p ~0ETIm

= 2.77 em. ()

Using equation (17.2),
bl

4t
__pd _2x1.25
" 4xo0, 4x30
= 2.08 cm, )

Ty

t =0.0208 m

The longitudinal or circumferential stresses induced in the material are inversely propor-
tional to the thickness (¢) of the eylinder. Hence the stress induced will be less if the value of '’ is
more. Hence take the maximum value of '’ calculated in equations (i) and (ii)

From equations (i) and (ii) it is clear that ¢ should not be less than 2.77 em.

Take t=2.80cm. Ans.

Problem 17.5. A water main 80cm diameter contains water at a pressure head of
100 m. If the weight density of water is 9810 Nim?, find the thickness of the metal required for
the water main. Given the permissible stress as 20 Nimm?,

Sol. Given :

Dia. of main, d =80 em

Presaure head of water, & =100m

Weight density of water, w = p x g = 1,000 x 9.81 = 9810 N/m*

Permissible stress = 20 N/mm?
Permissible stress is equal to circumferential stress (o)
or o, = 20 N/mm?*

Pressure of water inside the water main,
p=pxgxhs=wh=9810 x 100 N/m*

Here 6, is in N/mm?, hence pressure (p) should also be N/'mm?. The value of p in N/mm*is
given as

9810 x 100
P = 10002 mm? N/mm? (*> 1 m= 1000 mm)

= 0.981 N/mm?
Let ¢ = Thickness of the metal required.
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e N

xd
o, = J;xt (Here ‘d’ is in cm hence ‘¢* will also be in cm)

pxd _0.981x80
t= 2)'{(31 = 2% 20 =2 em. Ans,

EFFECT OF INTERNAL PRESSURE ON THE DIMENSIONS OF A THIN

CYLINDRICAL SHELL

When a fluid having internal pressure (p) is stored in a thin cylindrical shell, due to
internal pressure of the fluid the stresses set up at any point of the material of the shell are :

(i) Hoop or circumferential stress (a,), acting on longitudinal section.
(it) Longitudinal stress (g,) acting on the circumferential section.

These stresses are principal stresses, as they are acting on principal planes. The stress in
the third principal plane is zero as the thickness (t) of the cylinder is very small. Actually the
stress in the third principal plane is radial stress which is very small for thin cylinders and can
be neglected.

Let p = Internal pressure of fluid

L = Length of cylindrical shell

d = Diameter of the eylindrical shell

t = Thickness of the cylindrical shell

E = Modulus of Elasticity for the material of the shell

¢, = Hoop stress in the material

o, = Longitudinal stress in the material

it = Poisson's ratio
&d = Change in diameter due to stresses set up in the material
&L = Change in length
&V = Change in volume.

The values of 6, and 6, are given by equations (17.1) and (17.2) as
pxd

%= T

Let e, = Circumferential strain,
e, = Longitudinal strain.

Then circumferential strain,

Oy _ 1o,
“*F &
=p_d_£ [ 01=Hﬂndﬂ2—ﬁ)
2AE 4E 2t 41
= ﬂ —E] el 17.6)
2tE 2
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and

longitudinal strain,

o - 02 _ MOy ——
*" E E B
pd  upd hgd .
=E " %E (substituting values of 6, and g,)
pd (1 ] .
= 2UE H e

But circumferential strain is also given as,
Change in circumference due to pressure
Original circumference
Final circumference — Original circumference
Original circumference

I':']=

nid + &d) - nd
B nd
nd + ndd —nd _ ndd
= nd " nd
=E(or=Changnindiameter] P
d Original diameter
Equating the two values of e, given by equations (17.6) and (17.9), we get
6d _ pd u 3
"2' 2£E|: _E] LL17.10)
Change in diameter,
“uE 2 o
Similarly longitudinal strain is also given as,
Change in length due to pressure
€2= Original length
= & 17.12)
T ;
Equating the two values of e, given by equations (17.8) and (17.12)
%=£‘%[%'F] =A17.13)
Change in length,
pxdxL(1 -
8L=T(§-H] LA17.14)
Volumetric strains. It is defined as change in volume divided by original volume.
. : 8V
Volumetricstrain = v
But change in volume (8V) = Final volume — Original volume
Original volume (V) = Area of cylindrical shell x Length

=£d2x[,
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Final volume = (Final area of cross-section) x Final length

=§ (d + 8di% = [L.+ BL]

=§|d=+tad12+zd&ﬂxw+au

= % (@2 L +(8d)? L + 2d Ld + BLd* + 8L ()" + 2d 8dBL]
Neglecting the smaller quantities such as (8d)2L, 3L(8d)? and 2d 8d3L, we get
Final volume = % [d® L + 2d Lad + 6L d*)
Change in volume (§V)

ald el

[d‘3L+2dLBd+BM2]--Ed2xL

[2d Lad + 8Ld%

™ 12d Lad + SLd*]

4

Volumetric strains

<2

n
“d*xL
2 X

J17.156)

{'.' E=81.E=82] LL1TU16)
d L

-2 g5 )

(Substituting the values of e, and e,)

+

~| &

|

|

[ =]
_fﬁ

+

~
L

(- B34
22 (o 20 1
o\ "2 T2 7!

_ﬂ[ 1 _)
=aE\ g A

pd (5 ) o Ui
- —— __2 ol § )

2Ei\2 " i
Also change in volume (8V) = V (2¢, +e,). .A{17.18)

Problem 17.9. Calculate : (i) the change in diameter, (ii) change in length and
(iii) change in volume of a thin cylindrical shell 100 cm diameter, 1 cm thick and 5 m long when
subjected to internal pressure of 3 Nimm?, Take the value of E = 2 x 10° Nimm? and Poisson’s

ratio, p = 0.3.

-Hul. Given :
Diameter of shell, d =100 cm
Thickness of shell, t=1cm

Length of shell, L=6m=5x 100 = 500 cm
Internal pressure, p =3 N/mm?
Young’s modulus, E =2 x 10* N/'mm*

Poisson’s ratio, =030
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(i) Change in diameter (3d) is given by equation (17.11) as

_pd'[, p
NE 2
L )
2x1x2x10 2

3
= 4o [1-0.15/ = 0.06375 em. Ans.

(ii) Change in length (3L) is given by equation (17.14) as
pdL11_
8L = %E | 2 H
_ 3x 100:-:50(1 [l-O.SO]
2x1x2x10° |2
15

= 5'6 x 0.20 = 0076 cm. Ans.

(iii) Change in volume (8V) is given by equation (17.18) as
V=V ([2e +e)
V[ & [ )
Substituting the values of 8d, 8L, d and L, we get

- [2  0.08375 0.075]
s 100 500

=V [0.001275 + 0.00015] = 0.001425 V.

But V = Original volume = % d? L

% % x 100% x 500 em® = 3926990.817 cm?
5V = 0.001425 x 3926990.817 = 5595.96 cm®. Ans.

Problem 17.10. A eylindrical thin drum 80 em in diameter and 3 m long has a shell
thickness of 1 em. If the drum is subjected to an internal pressure of 2.5 Nimm?, determine
(i) change in diameter, (ii) change in length and (iii) change in volume.

Take E = 2 x 10° N/mm? : Poisson's ratio = 0.25.

Sol. Given :
Diameter of drum, d=80cm
Length of drum, L=3m=3x 100 =300cm

Thickness of drum, ¢=1cm

Internal pressure,  p = 2,56 N/mm?*
Young's modulus, E = 2 x 105 N/mm*
Poisson’s ratio, p =0.25

(i) Change in diameter (8d) is given by equation (17.11) as

2
L Lo P oy
2x1x2x10 2

=0.04[1-0.125] =0.035 cm. Ans.
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(i/) Change in length (8L) is given by equation (17.14) as

pdL |1
Wﬁ[ﬁ"‘]

2.5x80x3ﬁ0[l_026]_00375 e
—2x1x2x105 2 - = U Cm. :AnNs.

(iii) Using equation (17.15) for volumetric strain [%]. we have

oV 6d BL
— =2 —
v d L
2 0.035 = 0.0375 .. 6d=0.035, 8L =0.03756
=478 300 © d=80, L =300
= 0.000875 + 0.000125 = 0.001
V=0001xV

where volume V = -E- d®x L= % x 802 x 300 = 1507964.473 cm?
Change in volume, 8V = 0.001 x 1507964.473 = 1507.96 cm®, Ans.

Problem 17.11. A eylindrical shell 90 cm long 20 cm internal diameter having thickness
of metal as 8 mm is filled with fluid at atmospheric pressure. If an additional 20 em? of fluid is
pumped into the cylinder, find (i) the pressure exerted by the fluid on the cylinder and (ii) the
hoop stress induced. Take E = 2 x 10° N/mm? and p = 0.3.

Sol. Given :

Length of eylinder, L=9%¢em

Diameter of cylinder, d=20cm

Thickness of cylinder, t=8mm=0.8cm

Volume of additional fluid =20 cm?

Volume of eylinder, V= -E d*xL= % x 207 x 90
= 28274.33 cm?

Increase in volume, 8V = Volume of additional fluid
=20 cm?

(i) Let  p = Pressure exerted by fluid on the cylinder
E = 2 x 10° N/mm?*
w=0.3.
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Now using equation (17.16), volumetric strain is given as

1%
F il 2e,+e,
or 2827433 - 261 te wli

But e, and e, are circumferential and longitudinal strains and are given by equation 17.6)
and (17.8) respectively as

pd 1 ]
| ey 1" =)
=g 2"
pd (1
and AT ACE ui.
Substituting these values in equation (i), we get
20 2pd 1 pd |1 ]
= ; P i oxdl] WA
2827433 2Bt [ 2 "“] *uelz "
2p x 20 1 ] x20 [1
” -l | R o )
. 2:-:2><10"x0.3[ 2 +0_3x2x105[2 0'3]
p p 1.05p
. = x 0.85 x0.20 = —=
or 0.000707 3000 + 8000 3000
.000707 x 8000
. 10; = 5.386 N/mm?, Ans.
(i) Hoop stress (0, ) is given by equation (17.1) as
pd _5.386x20

Gl. = m 2 X 018 = “7-33 Nhl'lm’. I\“H.

Problem 17.12. A eylindrical vessel whose ends are closed by means of rigid flange
plates, is made of steel plate 3 mm thick. The length and the internal diameter of the vessel are
50 cm and 25 em respectively. Determine the longitudinal and hoop stresses in the cylindrical
shell due to an internal fluid pressure of 3 Nimm?. Also calculate the increase in length, diam-
eter and volume of the vessel. Take E = 2 x 10° Nimm® and p = 0.3.

Sol. Given :

Thickness, t=3 mm=03cm
Length of the cylindrical vessel, L = 50 em

Internal diameter, d=25cm

Internal fluid pressure, p =3 N/mm?
Young’s modulus, E = 2 x 10° N/mm?
Poisson's ratio, nu=0.3

Let o, = Hoop stress and
o, = Longitudinal stress.
Using equation (17.1) for hoop stress,
p ¥ d 3 x 25 _ 2 )
0|= 2‘ = 2x0'3 —125NJ'II!I.EI . Al'!\-
Using equation (17.2) for longitudinal stress,

o _pxd  3x25
2T 4t 4x03

= 62.6 N'mm?, Ans.
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Using equation (17.5) for circumferential strain,

Oy HX0,
“=F &
1
=g [0, -nx o,
= 2 xllt}“' [126-62.5x0.3) (*+ pn=03,0,=125 and 0, = 62.5)
1 106.256
= 2' % 10° (125 - 18.75) = 2% 10°
=53.125 x 1079,
But circumferential strain is also given by equation (17.9) as
dd

EI=_

Equating the two values of circumferential strain e, we get
% = 53.125 x 108
8d = 53.125 x 10° x d = 53.125 x 10 x 25 = 0.0133 cm
Increase in diameter, 6d = 0.0133 em. Ans.
Longitudinal strain is given by equation (17.7) as

8L _ 0y W X0,y

b - 3] = 62.5 - 37.
2% 10° 62 125 = 0.3] 2 [62.5 - 37.5]

= 23‘1505 = 12.5 x 10‘5

x 10°

». Increase in length, 8L = 125 x 105 x L
=125 x 10 x 50 = 0.00626 ecm. Ans.
Volumetric strain is given by equation (17.16), as
oV &d &l
— 2 — e —
vV d 1
=2 +e,=2x53.1256 x 10 + 125 x 10-°
=106.25 x 10° + 125 x 10° = 118.75 x 10°°
Increase in volume,

V=11876x10"x V

n S
=118.756 x lﬂ‘ﬁxg x 262 x 50 [ volume:—;d’ xL)
= 29.13 cm" A'lﬁ-—

Problem 17.13. A eylindrical vessel is 1.5 m diameter and 4 m long is closed at ends by
rigid plates. It is subjected to an internal pressure of 3 N/mm?®. If the maximum principal stress
is not to exceed 150 Nimm?®, find the thickness of the shell. Assume E = 2 x 10° Nimm? and
Poisson’s ratio = 0.25. Find the changes in diameter, length and volume of the shell.
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Sol. Given :

Dia., d =15m= 1500 mm
Length, L =4 m=4000 mm
Internal pressure,  p =3 N/mm?

Max. principal stress = 150 N/mm?

Max. principal stress means the circumferential stress

Circumferential stress, o, = 150 N/mm?
Value of E = 2 x 10° N/mm?
Poisson’s ratio, p=0.25
Let ¢t = thickness of the shell,
&d = change in diameter,
8L = change in length, and
8V = change in volume.
(i) Using equation (17.1),
_ pxd
V=T
_pxd - 3 x 1500
= 2x o, 2x150

(Here p and o, are in same units, 'd’

is in mm hence ‘t' will be in mm)
=15 mm. Ans.
(i) Using equation (17.11),

i [ - | ]
Ed-me 1 2x|.1

3 x 1500* [ 1 ]
- 1-—x025]= 0.984 mm. /Ans.
2% 152 x 10° -

2
(#if) Using equation (17.14),

_pxdkL[l_ )
C 2xE \2 #
=3x1500x4002 1_0'25]
2x16x2x10° 12

= 0,76 mm. Ans,

{iv) Using equation (17.17),
8V _ pxd [g_ ]
V " 2Exilz M
_ 3x 1500
T 9x2x10°x 15

o V'm 3 x[%xdzxf,}

3 x 1500 x 2
4x10°x 15

[é- 2x 0.25) =
2

2000 2000
= 20300 x(%x 1500° x 4000) = 10602875 mm®, Ans.
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Problem 17.15. A eylindrical shell 3 metres long which is closed as the ends has an
internal diameter of 1 m and a wall thickness of 15 mm. Calculate the circumferential and
longitudinal stresses induced and also changes in the dimensions of the shell, if it is subjected to
an internal pressure of 1.5 Nimm?®. Take E = 2 x 10° NImm? and p = 0.3.

Sol, Given ;

Length of shell, L=3m=300cm
Internal diameter, d=1m=100cm
Wall thickness, t=15mm=15¢cm

Internal pressure,  p = 1.5 N/mm?*
Young's modulus,  E =2 x 10° N/mm?
Poisson’s ratio, p=03
Let o, = Circumferential (or Hoop) stress, and
o, = Longitudinal stress.
Using equation (17.1) for hoop stress,
pd
2t
1.5 x 100 " ‘
= ox15 = 50 N/mm*®, Ans.
Using equation (17.2) for longitudinal stress,
pxd
9:= g
1.5x 100
= 4x15 ~

o=

25 N/mm?. Ans.

Changes in the dimensions
Using equation (17.11) for the change in diameter (8 d),

: 1
od = — l——:-cu]
2E 2

~ 1.5x100°
2x 1.5x2x10°

S .
4% 10 4 x 10

=021256x 103 em. Ans.

1
1-1x03 (+ n=0.3)
[ 2 ] *

Using equation (17.14) for change in length, we get

pxde(l_]
="%E \z "
l.ﬁxlOOxBDﬂ[l 3]

2x1.6x2x 10042

2

- 10 x 100 ’:_300 x02= 9.06 =0.016 cm. Ans.
4% 10 4

Using equation (17.17) for volumetrie strain, we get

8V _pxd[5 :l
V  2Et |2 B

1.5 x 100
= = w e =W, ]
Sxax i x1p 0~ 2% 0.0 b pmds

=0.25 x 10~ x |2.6 - 0.6]
=025x 107 x 1.9 =0.4756 x 10~
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. 1

. Change in volume, 8V = 0475 x 10 x V
where V = Original volume

- %d“ x L -% x 1002 x 300 = 2356194.49 em?.

i, 5V =0.475 x 10 x 2356194.49=1119.19em? Ans.

Problem 17.16. A thin eylindrical shell with following dimensions is filled with a liquid at
atmospheric pressure : Length = 1.2 m, external diameter = 20 cm, thickness of metal = 8 mm.

Find the value of the pressure exerted by the liquid on the walls of the cylinder and the
hoop stress induced if an additional volume of 25 cm? of liquid is pumped into the cylinder. Take
E = 2.1 x 10° Nimm? and Poisson’s ratio = 0.33.

Saol. Given :

Length, L=12m=1200 mm

External din. D =20 cm = 200 mm

Thickness, {=8 mm

~ Internal dia., d=D-2xt=200-2x8=184 mm
Additional volume, &V = 25 cm® = 26 x 10 mm? = 25000 mm*
Value of E =2.1 x 10° N/mm?

Poisson's ratio, p=0.33

Let  p = Pressureexerted, and
@, = hoop stress produced.
Volume of liquid or inside volume of cylinder,

V:%d’fo

- E x 184% x 1200 = 31908528 mm*

(i) Using equation{17.17),
L1 P*d[ﬁ_z ]

V 2Ext\2
m_ 26000 _ Pl (3-2x03s)
31908528 2x2.1x10°x8\2

25000 x 2x2.1x10° x 8

- ~ iy
P = 31908528 x 184 x (2.5 - 0.66) T4 Nmary, Ams

(i) Using equation (17.1),

pxd _7.77x184

Cll = 2: - 2XB =39.42me20 Ans,

L L Lt e e T T T P IS T R S s S e R s s itk it
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T I X
PRINCIPAL PLANES AND PRINCIPAL STRESSES

The planes, which have no shear stress, are known as principal planes. Hence principal
planes are the planes of zero shear stress. These planes carry only normal stresses.

The normal stresses, acting on a principal plane, are known as principal stresses.

The stresses on oblique section are determined by the following methods :
1. Analytical method, and 2. Graphical method.

ANAIATICALMETHOD FORDETERMINING STRESSES ON OBLIQUESECTION

The following two cases will be considered ;
1. A member subjected to a direct stress in one plane.

2. The member is subjected to like direct stresses in two mutually perpendicular
directions.

3.4.1. A Member Subjected to a Direct Stress in one Plane. Fig. 3.1 (a) shows a
rectangular member of uniform cross-sectional area A and of unit thickness.

Let P = Axial force acting on the member,
A = Area of cross-section, which is perpendicular to the line of action of the force P.
The stress along r-axis, a =%
Hence, the member is subjected to a stress along x-axis.
Consider a cross-section EF which is perpendicular to the line of action of the force P.

'l \ w
P “-' P (90-4)
+- g . -— S
Pl ¥ (80-2) -5 X d
F T,
Fig. 3.1 (o) Flg. 3.1 1M
Then area of section, EF=EFx1=A.
The stress on the section EF is given by
o= force _P o
Areaofl EF A

The stress on the section EF is entirely normal stress. There is no shear stress (or
tangentinl stress) on the section EF,

Now consider a section FG at an angle 8 with the normal cross-section EF as shown in
Fig. 3.1 (a).
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Area of section FG = FG % 1 (member is having unit thickness)

EF EF EF

- . ,—=cos8 . FG=

B:l [ In A EFG G cos 5

=L (._. EF’I_—_A,
cos

.. Stress on the section, FG

_ Force |
_Armafmionm_( A dmnﬂ
cos b

A

This stress, on the section FG, is parallel to the axis of the member (i.e., this stress is
along x-axis). This stress may be resolved in two components. One component will be normal
to the section FG whereas the second component will be along the section FG (i.e., tangential
to the section FG). The normal stress and tangentinl stress (i.e., shear stress) on the section
FG are obtained as given below [Refer to Fig. 3.1 (b)].

=0 cos® (-,-fm] @.1)

Let P = The component of the force P, normal to section FG
= Pcos®
P, = The camponent of force P, along the surface of the section FG (or tangential
to the surface FG)
= Psin®
o, = Normal stress across the section FG
o, = Tangential stress (i.e.. shear stress) across the section FG.

. Normal stress and tangential stress across the section FG are obtained as,

Force normal to section FG
Normal stress, o,= T soction FG

JERjEN

F ']
Ams& mB-AmB

(~ P =Pcos8)

=gcos’ @ ( i--u] A3.2)

Tangential stress (i.e., shear stress),

o _Mnﬁali:mmmﬁmm
o Area of section FG

Pgrin®

rages

(v P,=Psin®

=%sine.m0-osin0.mﬁ
=% x 2 in 8 cos 0 (Multiplying and dividing by 2|
-%m’n?ﬂ (+ 2 sin 0 cos @ = sin 20) (3.8)
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From equation (3.2), it iz seen that the normal stress (o) on the section FG will be
maximum, when cos® 8 or cos 8 is maximum. And cos 8 will be maximum when 6 = 0" as
cos 0° = 1. But when 8 = 0°, the section FG will coincide with section EF. But the section
EF is normal to the line of action of the loading. This means the plane normal to the axis
of loading will carry the maximum normal stress,

. Maximum normal stress, =gcos’=ccos’0°=0 A3.4)

From equation (3.3), it is observed that the tangentinl stress {i.e., shear stress) acroas
the section F'G will be maximum when sin 20 is maximum. And sin 20 will be maximum when
sin 26 = 1 or 26 = 90° or 270°
or 8 = 45° or 135°,

This means the shear stress will be maximum on two planes inclined at 45° and 135° to
the normal section EF as shown in Figs. 3.1 (¢) and 3.1 (d).

Mu.valueul'nhearuma-%sin!mn%nin90'-§. A3.5)

First plane of maximum

ehéar sireds 0 = 457

E V ~ E

45"

. L A s B

F F
sacond plane of maxemum
ghear siress 0 = 135°

Fig. 3.1 (e} Fig. 3.1 1

From equations (3.4) and (3.5) it is seen that maximum normal stress is equal to o
whereas the maximum ghear stress is equal to o/2 or equal to half the value of greatest

normal stress.

Problem 3.1. A rectangular bar of cross-sectional area 10000 mm? is subjected to an
axial load of 20 kN. Determine the normal and shear stresses on a section which is inclined at
an angle of 30° with normal cross-section of the bar.,

Sol. Given :

Croas-sectional area of the rectangular bar,
A = 10000 mm?

Axial load, P=20kN = 20,000 N

Angle of obligue plane with the normal cross-zection of the bar,
A = 30°

y P 20000 o
Now direct stress G=A=1m.2Nm
Let o, = Normal stress on the oblique plane

a, = Shear streas on the oblique plane.
Using equation (3.2) for normal stress, we get

o,=0 cos” 8
= 2 x cos? 30° (v a=2Nmm?
= 2 x .866% (~- cos 30° = 0.866)

= 1.5 N'mm?. Ans.
Using equation (3.3) for shear stress, we get

n,=gsin2ﬂ=3xsin{2x30°l
= 1 x sin 60° = 0.866 N'mm?®. Ans.
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Problem 3.2. Find the diameter of a circular bar which is subjected to an axial pull of
160 kN, if the maximum allowable shear stress on any section is 65 N/ mm?®.

Sol. Given :
Axial pull, P = 160 kN = 160000 N
Maximum shear stress = 65 N/mm?
Let D) = Diameter of the bar

Area of the bar s%D"

i P 160000 640000 "

Direct stress, U-I‘ e = D N/mm
Maximum shear stress is given by equation (3.5).

2 a _ 640000

& Maximum shear stress -9 2x Dt °

But maximum shear stress is given as = 65 N/mm?.
Hence equating the two values of maximum shear, we get

640000
2 x rD*
640000
D= - rr = 1567
D = 38058 mm. Ans,
Problem 3.3. A rectangular bar of cross-sectional area of 11000 mm? is subjected to a

tensile load P as shown in Fig. 3.3. The permissible normal and shear stresses on the oblique
plane BC are given as 7 Nimm?® and 3.5 N/imm? respectively. Determine the safe value of P.

Sol. Given ;
Area of cross-section, A = 11000 mm? c
Normal stress, o, =7 N/mm* P P
Shear stress, o, = 3.5 N/mm? “— [
Angle of oblique plane with the axis of bar = 60°. 80"
£ Angle of oblique plane BC with the normal eross- B
section of the bar, Fig. 3.9
8 = 90° - 60* = 30°
Let P = Safe value of axial pull

o = Safe streas in the member.,
Using equation (3.2),

ag,=0cos’® or 7 =0 cos’30°
= 0 (0.866)°, (" cos 30° = 0.866)

7
S — 2
o= 5508 x 0.068 " Y434 N/mm
Using equation (3.3),
q--;—'sinae
or 3.5=%ﬁn213r-%uinﬂﬂ'-%x0.366
= 35x2

= 8,083 N/mm?,
The safe stress is the least of the two, i.e., 5.083 N/mm?~,
Safe value of axial pull,
P = Safe stress x Area of cross-section
=8.083 x 11000 = 88913 N = B8.913 kN. Ans.

.. g
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3.4.2. A Member Subjected to like Direct Stresses in two Mutually
Perpendicular Directions. Fig. 3.4 (a) shows a rectangular bar ABCD of uniform cross-
sectional area A and of unit thickness. The bar is subjected to two direct tensile stresses (or
two-principal tensile stresses) as shown in Fig. 3.4 (a).

i,
Rnsiosiiin

Let FC be the oblique section on which stresses are to be calculated. This can be done
by converting the stresses o, (acting on face BC) and 0, (acting on face AB) into equivalent
forces. Then these forces will be resolved along the inclined plane FC and perpendicular to
FC. Consider the forees acting on wedge FBC.

Let # = Angle made by oblique section FC with normal cross-section BC

0, = Major tensile stress on face AD and BC
o, = Minor tensile stress on face AB and CD
P, = Tensile force on face BC
P, = Tensile force on face FB.

The tensile foree on face BC,

P, =0, x Area of face BC =0, x BC x 1 (v Area=BCx1)

The tensile force on face FB,

P, =Stress on FB x Areaofl FB=a,x FB x 1.

Thetemilelhmu?,mdP,mnhoacﬁn:untbeobliqueucﬁonFC.'ﬂnfomP is
acting in the axial direction, whereas the force P, is acting downwards as shown in Fig.
3.4 (a). Two forces P, and P, each can be resolved into two components i.e., one normal to the
plane FC and other along the plane FC. The components of P, are P, cos 6 normal to the plane
FCnndPlsi.nBnlnngtheplancintheupwnrddiracﬁon_ThecnmponenhoszmP,:inﬂ
normal to the plane FC and P, cos 6 along the plane in the downward direction.

Let P, = Total force normal to section FC
= Component of force P, normal to section FC
+ Component of force P, normal to section FC
P, cos 8+ P,5in®
0, x BC x c0s 0 + 0, x BF x sin @ (- P, =0, xBC,P,=0,x BF)
Total force along the section FC
Component of force P, along the section FC
+ Component of force P, along the section FC
= P, sin0+ (- P,cos 6) (—ve sign is taken due to opposite
direction)

= P,sin0-P,cos 0
= 0, x BC x 5in 8 - 0, x BF x cos 8
(Substituting the values P, and P,)

g, = Normal stress across the section FC
- Total force normal to the section FC

Area of section FC
P, _0;xBCxcosf+0,xBF xsin#
FCx1 FC
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BC BF .
= o,uﬁxmﬂfuluﬁxmﬂ
= 0, xcosBxcosB+0,xsinBxsind
BC BF
. In ' e W — =gl
( triangle FBC, = = cos8, - m.nﬂ]
= ulm’ﬂ+u,ainfe
1+cos20) 1-cos20)
= 0, — +0, —
[+ cos?@=(1+cos 20¥2 and sin 8 = (1 — cos 20)/2)

Gl+01+0, -G‘

= 2 2 cos 20 LA3.68)
o, = Tangential stress (or shear streas) along section FC
_ Total force along the section FC [ g _ Force
- Area of section FC : Area
o .aluﬂﬂ’xlinﬂ-a,xﬂfxmﬂ
FCx1 FC
=0 x_B_C x &in -0 ng-xml'l
' FC 7 FC
=a, x cos B x sin § - 0, x &in # x cos O
[ In triangle FBC, %-ma.%--ina]
-lu'-ugjmltl:intl
-w’—;ﬂﬂuﬂmﬂﬁnﬂ (Multiplying and dividing by 2)
-EE'J-;—"I-'.inm 3.7

The resultant stress on the section FC will be given as

03=Jcr,’+ﬂ,’ A3.8)

Obliguity [Refer to Fig. 3.4 (b)]. The angle made D c
by the resultant stress with the normal of the oblique
plane, is known as obliquity. It is denoted by o. “
Mathematically, o

2 Wa
tang= _* [3.8 (A)

" a,

Maximum shear stress. The shear stress is given Fig. 8.4 ib)
by equation (3.7). The shear streas (0,) will be maximum
when

gin20=1 or 20=90° or 270¢ (= gin 90° = 1 and also gin 270° = 1)
or 8 = 45" or 135°

And maximum shear stress, (0,) = E‘;—G& L1389

NOTE

* cos 28 = cos? 8 - sin? B ** cos 20 = cos” B - sin? B

scoa?fl-(1-cos?B=2cos’B-1 =(]-gin?@ -zin?@=1-2sin*0
{1+ con 20) i g (1- cos 20)

=~—2— s osin? 0 -T

socos? @
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The planes of maximum shear stress are obtained by making an angle of 45 and 135°
with the plane BC (at any point on the plane BC) in such a way that the planes of maximum
shear stress lie within the material as shown in Fig. 3.4 (¢).

P "“"‘"‘""“’—D\g
=\,

/ B B
Fig. 3.4

Hence the planes, which are at an angle of 45° or 135" with the normal cross-section
BC |see Fig. 3.4 ic)], carry the maximum shear stresses,
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Principal planes. Principal planes are the planes on which shear stress is zero. To
locate the position of principal planes, the shear stress given by equation (3.7) should be
equated to zero,

~.  For principal planes,

El;—"iainm.u

or sin20 =0 [+ (o, - 0,) cannot be equal to zero]
or 20 =0 or 1B0°
- =0 or 90°
when 6 = 0, g, = ul;G,+U|;Gg cos 20
6,40, 0,-0; "
= + cos 0
2 2
= “';"" + U208 (+ cos0°=1)
'dl
when 6 = 90°, o, n"l;"h"';"* cos 2 x 90°
s o | ;" P i ;" cos 180°
- "1;“* +228 wi-p (+ o008 180° = — 1)

Note. The relations, given by equations (3.8) Lo (3.9), also hold good when one or both the stresses
are compressive.

Problem 3.5. The tensile stresses at a point across two mutually perpendicular planes
are 120 Nimm® and 60 Nimm?. Determine the normal, tangential and resultant stresses on a
plane inclined at 30° to the axis of the minor stress.

Sol. Given :

Major principal stress, o, = 120 N/mm?*

Minor principal, o, = 60 N'mm*

Angle of obligue plane with the axis of minor principal stress,

0=230"
Normal stress
The normal stress (0,) is given by equation (3.6),
& o, = ﬂ.;ﬂg_‘_ﬂl;U; cos 20
= lma-l!l)*lﬂﬂ—ﬂﬂ
2 2
m+30m50°390+301‘}
1056 N/'mm?®. Ans

cos 2 x 30°
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Tangential stress 5
The tangential (or shear stress) o, is given g, = 60 Nimm

byequjﬁﬂn‘-'*-'”* i HH“FHH‘

G, =05 . ~
0, = ——2 5in 20 " +—] "€
"2 £+ moin — 3
«130-60 o @ x 309 8 anu/ —> 8
B — Major sress —
= 30 x sin 60° = 30 x 0.866 < s
= 25.08 N/mm®. Ans.
Resultant stress 0, =60 Nimm'
The resultant stress (o) is given by
equation (3.8) Fig. 3.5

O = y0,° +0,% =105 + 25987

= 1flmzs + 67496 = 108.16 N'mm?®. Ans.

Problem 3.6, The stresses at a point in a bar are 200 Nimm? (tensile) and 100 Nimm?
{compressive). Determine the resultant stress in magnitude and direction on a plane inclined
at 60° to the axis of the major stress. Also determine the maximum intensity of shear stress in
the material at the point.

Sol, Given :
Major principal stress, 0, = 200 N'mm*
Minor principal streas, 0, = — 100 N/mm?*

(Minus sign is due to compressive stress)
Angle of the plane, which it makes with the major principal stress = 60°
Angle 8 = 90° - 60° = 30",
Resu!ium stress in magnitude and direction
First calculate the normal and tangential

stresses, .
Using equation (3.6) for normal stress, TTT‘“T“TTT TT
g,=202%  21-% a9 L1
. 2 2 5_ — -
200 + (- 100) 200 (- 100) g‘—,__ g
i L : Eq——-And B
coe (2 x 30°) N | majorstress =
{(+ B=30%
_200-100, 2004100 g LI
B T 3 G 100 Nimm'
=50+ 150 x El {* cos60° = %] Fig. 3.8

=50 + 75 = 125 N/mm?,
Using equation (3.7) for tangential stress,
“ %2 Gin20= L";'m sin (2 x 30°)

gin 60° = 150 x 0.866 = 129.9 N/mm?

g,
l':i"=
- 200 + 100
2

Using equation (3.8) for resultant stress,
op = Jg" +0,2 :leﬁ’ + 1299°

= 15625 + 16874 = 180.27 N/mm?, Ans.

The inclination of the resultant stress with the normal of the inclined plane is given by
equation [3.8 (A)] as

o, 1209
tangp=—"L="" =104
’ o, 125

p=tan™' 1.04 = 46° 8. Ans,
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Maximum shear stress

Maximum shear stress is given by equation (3.9)
c,-o,_m-t—lou}=m0+1on=l“m N g
2 2 2 B

(0 =

Problem 3.8, Al a point in a strained material the principal stresses are 100 Nimm?
(tensile) and 60 Nimm? (compressive). Determine the normal stress, shear stress and resultant
stress on a plane inclined at 50° to the axis of major principal stress. Also determine the
maximum shear stress al the point,

Sol. Given :

Major principal stress, ©, = 100 N'mm*

Minor principal stress, o, =—60 N/'mm* (Negative sign due to compressive stress)

Angle of the inclined plane with the axis of major principal stress = 50°

- Angle of the inclined plane with the axis of minor principal stress,

0 =90 - 50 = 40°,
Normal stress ()
Using equation (3.6},
0, +0; O, -0y
a,s= 2 + 2 cos 20
100+ (- 60) 100 - (- 60)

- coa (2 x 40°)
gk

= 1002-60+100;mmw

= 20 + 80 x cos 80° = 20 + 80 x .1736

=20 + 13.89 = 33.80 N/'mm®. Ans.
Shear stress (0,)

Using equation (3.7), 6, = El-—fill.mm

_ 100 - (- 60)

2 sin (2 x 407)

100 + 60
2

sin 80° = 80 x 0.9848 = 78.785 N/mm®. Ans.

Resultant stress (ap)
Using equation on (3.8),

oy = Jo: +af ="33.393 + 78785%

= J114853 + 620707 = 85.765 N/mm®. Ans.
Maximum shear stress

Using equation (3.9),
o, =0, _100-{-60)
) e e
100 + 60
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Problem 3.9. At a point in a strained material, the principal stresses are 100 Nimm®
tensile and 40 Nimm? compressive, Determine the resultant stress in magnitude and direction
on a plane inclined at 60° to the axis of the major principal stress. What is the maximum
intensity of shear stress in the material at the point ?

Saol. Given :

The major principal stress, o, = 100 N/mm?*

The minor principal stress, o, = - 40 N‘'mm* (Minus sign due to compressive stress)

Inclination of the plane with the axis of major principal stress = 60"

» Inclination of the plane with the axis of minor principal stress,

6 = 90 - 60 = 30°.
Resultant stress in magnitude
The resultant stress (o) is given by equation (3.8) as

oy = Joi +of
where o, = Normal stress and is given by equation (3.6) as
-1M+t-40}+lm-l-—4mm{2!wl
2 2
100 - 40 100 + 40
= 2 + 2 cos 60°
=30+ T0x 0.5 (~: cos 60° =0.5)
= 65 N/mm?*
and 0, = Shear stress and is given by equation (3.7) as

-El%'hinm-&';'ﬂ-in:zxwa

100 + 40
2

O = JGE’ +6062° = 88.9 N'mm?, Ans.
Direction of resultant stress
Let the resultant stress is inclined at an angle ¢ to the normal of the oblique plane.
Then using equation [3.8 (A)].

gin 60° = 70 x .B66 = 60.62 N/mm?*

o, 6062
tan p = —L=
' ag, 65
o = tan™! 8 =43, Ans.

Maximum shear stress

Using equation (3.9), (0),,, = 252
100 - (- 40) 100+ 40

2 2 =70 N‘mm?, Ans.
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3.4.3. A Member Subjected to a Simple Shear Stress,
Fig. 3.8 shows a rectangular bar ABCD of uniform cross- D —
sectional area A and of unit thickness, The bar is subjected to a
simple shear stress (g) across the faces BC and AD. Let FC be
the oblique section on which normal and tangential stresses ‘I
are to be calculated. P,
Let 8 =Angle made by oblique section FC with normal Y — B
cross-section BC,
1 = Shear stress across faces BC and AD.
It has already been proved (Refer to Art. 2.9) that a shear stress is always accompanied
by an equal shear stress at right angles to it. Hence the faces AB and CD will also be subjected
to a shear stress g as shown in Fig. 3.8. Now these stresses will be converted into equivalent
forces. Then these forces will be resolved along the inclined surface and normal to inclined
surface, Consider the forces acting on the wedge FBC of Fig. 3.9.

(v}

Fig. (k.8

Let Q, = Shear force on face BC o c
= Shear stress x Area of face BC o»q,,
=txBCx1 0'“"““0. .
(++ Area of face BC = BC x 1) o/ YexBCx1
=1tx BC F
Q, = Shear force on face FB S 8 e
=t x Area of FB A e
=txFBx1=t.FB %,q'
P, = Total normal force on section FC Fig 3.9 o

P, = Total tangential force on section FC.
Hmﬁ:rueqlisuﬁngulongfmCBushminFig.3.9.111i.sfomiurunlwdinwtwu
components i.e., @, cos 8 and @, sin 8 along the plane CF and normal to the plane
CF respectively.
The force @, is acting along the face FB. This force is also resolved into two components
i.e., @, sin 8 and @, cos 6 along the plane FC and normal to the plane FC respectively.
» Total normal force on section FC,
P =Q,sinB+Q,cos8
=txBCxsinB+txFBxcos0, (v @ =txBCandQ,=1xFB)
And total tangential force on section FC,
P, =Q,s8in0-Q cos8. (~ve sign is taken due to opposite direction)
=tx FBxsinB-1xBC xcos @ (v Qu=t1.FBand @, =1.BC)
Let o, = Normal stress on section FC
o, = Tangential stress on section FC
Then Total normal force on section FC
g, = -
" Area of section FC
.
FCx1
1.BC.sin®+1t.FB.cosB
= FC x1
--:.-'B-E gin@+ 1 E cos O
=1,c080.8nB+1.8in0.co80

e 3 E- Ez 1
[. In triangle FBC, 5 = cos 8, = ma]

(> Area=FC x1)

=2tcos B .sinb
= t 8in 20 {(** 2sinBeosl=8in28) 1310
s Total tangential force on section FC

il % Aroa of ssction FC

F
FCx1
1xFBxsin®-txBC xcos®
FC x1
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=TN E :ainl!'—tng-c— % cos 0
FC FC

=rxginBxsin® - 1txcos B xcos @

= t8in? @ - t cos® 8 = — 1 [cos® 8 - sin? 6]

=—1tcos 20 (= cos’B—sin®B=cos20) .11
-ve sign shows that o, will be acting downwards on the plane CF.
3.4.4. A Member Subjected to Direct Stresses in two Mutually Perpendicular

Directions Accompanied by a Simple Shear Stress. Fig. 3.10 () shows a rectangular
bar ABCD of uniform cross-sectional area A and of unit thickness, This bar is subjected to :

%
[ X I 3
L -
- — ¥
-— P, Si—s Q, cos /b o)
o T * 5 [ Al
! > ! —®P,=0,xBC x1
> L1
= e/ N2 QaF 0
B

Pysa,xFBx1

T ==

) (1]
Fig. 3.10

(i) tensile stress o, on the face BC and AD
(ii) tensile stress 0, on the face AB and CD
(iii) a simple shear stress T on face BC and AD.

But with reference to Art. 2.9, a simple shear stress is always accompanied by an equal
shear stress at right angles to it. Hence the faces AB and CD will also be subjected to a shear
stress 1T as shown in Fig. 3.10 (a).

We want to caleulate normal and tangential stresses on oblique section FC, which is
inclined at an angle © with the normal cross-section BC. The given stresses are converted into
equivalent forces.

The forces acting on the wedge FBC are :

P, = Tensile force on face BC due to tensile stress o,
=0, x Area of BC
=0, xBCx1 («+ Area=BCx1)
=0, x BC
P, = Tensile force on face FB due to tensile stress o,
=0, xAreaof FB=a,x FBx 1
-G’.lm
Q, = Shear force on face BC due to shear stress 1
= T x Area of BC

=txBCx1=1xBC
Q, = Shear force on face FB due to shear stress 1
=1 x Area of FB
=txFBx1=1xFB.
Resolving the above four forces (i.e., P,, P,, @, and Q,) normal to the oblique section
FC, we get

Total normal force,
P =P,cos®+P,sin0+Q sin0+Q,co80
Substituting the values of P, P,, Q, and Q,, we get
P,=6,.BC.cos0+0, . FB.sint+t.BC.sin0+71.FB.cos®
Similarly, the total tangential force (P,) is obtained by resolving P, P,, @, and @, along
the ablique section FC.
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Total tangential force,
P, =P sin-Pycos0-Q,cos0+Q,sinbH
= 0,.BC.sin0-0,.FB.cos@-7.BC.cos@+1.FB . sin®
(substitute the values of P, P,, Q, and Q,)
Now,Let o, = Normal stress across the section FC, and
o, = Tangential stress across the section FC.
Then normal stress across the section FC,
" _ Total normal force across section FC Fa
= Area of section FC FCx1
6,.BC.cos0+0, . FB.gin0+1.BC.sinB+1.FB.cosB
- FC %1

-n,.%.mﬂ-&u,.% .sinﬂq-t.%. .ﬁnll+t.%.ml}
=0,.c080.c080+0,5in0.5in0+7.c080.8in0+7sin0.cos b
( In triangle FBC £=mﬂlnd£-ilna]

"FC FC

= 0, cos® B + 0, sin*  + 21 cos B sin B
[—-—-*-l+?m]+ug(—l_?m]+minm

[ msg_l_*_“_m’.mig.l‘;';m;mzmﬂdna..inm]

=0

ﬂl + ﬂ, + ul - “i
2 2
d tangential stress (i.e., shear stress) across the section FC,

.Tutllunpnﬁllfnrmnmmm F,

cos 20 + T sin 20 (3.12)

% Area of section FC “FCcx1
0,.BC .sin0-0,.FB.cosf-1.BC.cos6+ 1.FB.sin 0
= FC x1
BC FB BC FB .
=0,. —. -0, — . B=-1,—. L] L—
a, FC sin B - @, FC cOs 1 e cosf+1 FC sin B

=0,.co8b).sin0-0,.8in0.cos0-1.c080.c080+71.5in0.8in0
BC FB
<= In triangle FBC.HsmBnnd—ssins]
( FC FC
= (0, — 0,) . cos O sin 8 — 1 cos? B + T8in* O

-[EL';'—Gl].Rmﬂsinﬂ—tlm"ﬂ-sin"Hl

=5;—63-.lin20—tm20 (" cos®B-sin®B=cos200 313
Position of principal planes. The planes on which shear stress (i.e., tangential stress)
is zero, are known as principal planes. And the stresses acting on principal planes are known
as principal stresses,
The position of principal planes are obtained by equating the tangential stress [given
by equation (3.13)] to zero.

For principal planes, 0,=0

or -‘-’—L;flainzeuzmzu-u
0, -0y
or --'-—mz sin 20 = t cos 20
-inm= T = 2t
or c0s20 (0)-0y) (0,-0,)
2
or mﬂﬂ-—h——- £3. 14}
(o, -ay)
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But the tangent of any angle in a right angled triangle N
Height of right angled triangle
" Base of right angled triangle
Height of right angled triangle = 21 21
Base of right angled triangle (o, -0y)
Height of right angled triangle = 2%

Base of right angled triangle = (0, — 0,). 20
Now diagonal of the right angled triangle Hr—" M
'ii'(dl—ﬂg]! +(21)° =1J(ﬂ|-ﬂgl’*"li Fig. 3.11

= 1{;5' -0g) +4¢% and - .‘ﬁo, -0,) +41*
1st Case. Diagonal = 1“.((,-;' -0y ¥+ 41t

The sin 20 Sleight =
n = -

mm‘l J.Ui —U‘J’ +"ti
anid Py Base (0, - 0g)

—_— b
Diagonal i, - g,)% + 41°
The value of major principal stress is obtained by substituting the values of sin 20 and
¢08 20 in equation (3.12),
Major principal stress
T

‘dl_"'ox*ﬂl-ﬂgx (0; —-0y) s 2t -
2 2 (0, -0y)* +41° J(o.-cr,}’ +41
R 2
-G!+ﬂa+l (0, —ag) 4 2:2 g
2 2 ‘ul-ﬂ"z‘f‘"[’ (UI—U” “'41

0,40, (0, -06,)" + 41

2 2f(0,-0,) +41°

=ﬂ¥l+%‘nn' -naj’-ul.t’

2
59+% . 1%5-%)| .

cos 20 + 1 8in 20

(3.15%

2 2
2nd Case. Diagonal = - "H["l —ay)® +4r?
x 2t
Then 8in 20 =

- (0, -ay)% + 47
(0, - 0y)
- Jloy — 0, +4r?
Substituting these values in equation (3.12), we get minor principal stress.
Minor principal stress
_91+0; 0O

and coa 20 =

;u“ cos 20 + 1 sin 20

2
'0|+Gg+ﬁ|-t‘!=x Gl-ﬂ’ — 24'
2 2 -J(u| -0g) +41* = Jlo, -ay)* + 41’
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0, +0; (0, -a,)* _ 2¢*
E 2J(0, -0, +417 (0, —0y)* + 412

o, +0, (o, -0y) +41°
= - =
2 2fio, - 0,0 441

=%'%\ﬁ“l —Uaja "'41.'2

2
o, +0 (0; —0,)
= 12 i_J( |2 !] '|’Tg ol 3. 16)

Equation (3,15) gives the maximum principal stress whereas equation (3.16) gives

minimum principal stress. These two principal planes are at right angles.

The position of principal planes is obtained by finding two values of 8 from equation(3.14).
Fig.3.11(a)showsthe principal planesin which#, and8, are the values from equation (3.14).

- & 3 & A & b b
D Cc
‘a
kS f A »
: F F :
9 planes il
* o »
a 0, = >
%Am 90" + 8,
A B ¥'
a, e
r r v L 4 r
Fig. 3.11 la

Maximum shear stress. The shear stress is given by equation (3.13). The shear streas

will be maximum or minimum when

or

oar

or

ar

4 a0
:—ﬂ[ﬂl;—"lmm-:mm]:n

%{meslxz—ﬂ-aiuamnz-n

(g,-a,).cos 20 + 2t 8in 20 =0
2t sin 26 = - (0, - 0,) cos 26
= {0, —0,) cos 20
sin20 _o,-0,

cos 20 2t
mﬁﬁ:._L_..Lo 2-10 BT
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Equation (3.17) gives condition for maximum or minimum shear
stress.
If tan 20 = L. Sk | -
2t G
O, -0 }
Then sin 20 = + ot £
Yoy -0,) +4¢*
2
and cos 20 = £ L

J(ﬂ! i Ulll + "[I

Substituting the values of sin 20 and cos 20 in equation (3.13), the maximum and
minimum shear stresses are obtained.

Maximum shear stress is given by

(@) =21"%2 5in 26—t cos 20

1 max 2

o - 3
s % -9 . (a0 —ay) P 2t
2 'ﬂ’ ""01 j’ +‘t= ﬂi —ﬂl ]’ +‘t‘
(o, -04)° 2r?
=1 x
ﬂtn, -0, +4¢? -J(a, -0y + 417
2 2
=1 ‘u' U]! th -t*}"&ﬂ,-ﬂ|l‘+“r‘
2Jtﬂ,-ﬂtl'+4!’ 2
(0) oy = %ﬁo,—al}’ + 4t
.%Jm,—a,)’+h’ {318

The planes on which maximum shear stress is acting, are obtained after finding the
two values of 0 from equation (3.17). These two values of 0 will differ by 90°.

The second method of finding the planes of maximum shear stress is to find first principal
planes and principal stresses. Let 0, is the angle of principal plane with plane BC of Fig. 3.11
{a). Then the planes of maximum shear will be at 8, + 45° and 6, + 135° with the plane BC as
shown in Fig. 3.12 (a).

a ' 4 4 % & 1h ' »
L1
D [
‘lh ."
- ¢ Ly &
. ) '::" ol »
N
- /’Q s
o, \ a,
- 0, + 135° ®
A T B v
o | | ‘

Fig 3.12(a)
Note. The above relations hold good when one or both the stresses are compressive.
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Problem 3.11. At a point within a body subjected to two mutually perpendicular
directions, the stresses are 80 N/imm? tensile and 40 Nimm? tensile. Each of the above stresses
is accompanied by a shear stress of 60 Nimm?®. Determine the normal stress, shear stress and
resultant stress on an oblique plane inclined at an angle of 45° with the axis of minor tensile
atress,

Sol. Given :

Major tensile stress, o, = 80 N/mm?

Minor tensile stress, o, = 40 N/'mm?*

Shear stress, 1 = 60 N/mm?

Angle of oblique plane, with the axis of minor tensile stress,

6 = 45°,

(i) Normal stress (o, )

Using equation {3.12),

o =*% .9

;6’ cos 26 + T &in 20

.3“;‘“+w;‘° cos (2 x 45°) + 60 sin (2 x 45°)

= 60 + 20 cos 90° + 60 sin 90°

=60+20x0+60x1 (" coa90°=0)
=60+ 0+ 60 =120 NNmm?. Ans,

7 lerein ctrecs X 'l

80 N/mm ¢ B0 N/mm
H
¥
"

(ii) Shear (or tangential) stress (a,)
Using equation (3.13),

u,-g';—u*-sinzau:mza

8040 0\ (2 x 45°) — 60 x cos (2 x 45°)
= 20 = sin 90° - 60 cos 90°
=20x1-60x0
= 20 N'mm?®. Ans

(#ii) Resultant stress (og)

Using equation, N

= {1207 + 20* = /14400 + 400
= J14800 = 121.655 N/'mm®. Ans.

Problem 3.12. A rectangular block of material is subjected to a tensile stress of 110
Ni/mm? on one plane and a tensile stress of 47 Nimm?® on the plane at right angles to the former.
Each of the above stresses is accompanied by a shear stress of 63 Nimm® and that associated
with the former tensile stress tends to rotate the block anticlockwise. Find :

(i) the direction and magnitude of each of the principal stress and

(ii) magnitude of the greatest shear siress.
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Sol. Given ;

Major tensile stress, o, = 110 N/mm?

Minor tensile stress, o, = 47 N/mm*

Shear stress, 1 = 63 N/mm?*

(i) Major principal stress is given by equation (3.15).

3
<. Major principal stress = 8120 , G'_O’] +1t

2
4 47 Nmm"
B3I N/mM’
1mumn" ¢ | 110 Nimm”
eaum-n’
2
¥ 47 Nimm

1
_ 110;474(110;41) o

2
157 |63 ;
L 2201 +(e3
2 ' 2) G

=7a.5+J§1.5*+33‘ = 785 + /99295 + 3969

= T8.5 + 70.436 = 148,936 N'mm?®, Ans.
Minor principal stress is given by equation (3.16).

. » " u. 1'0' dl —ﬂ’ 2
. Minor principal stress, == 2 +1

[ 2
- 110 +47 [110 47] +63' = 78,6 —70.436

2 2
= B.064 N/mm?. Ans.
The directions of principal stresses are given by equation (3.14).
.~ Using equation (3.14),
2t _ 2x63
o,-0y; 110-47

tan 20 =

20

20 = tan"! 2.0 = 63° 26" or 243" 26
& 0=31°43" or 121°43". Ans
(if) Magnitude of the greatest shear stress
Greatest shear stress is given by equation (3.18).
Using equation (3.18),

(0) o = =y(0; 0y +41°

V(100 - 47)% + 4 x 63*

B = B
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- %JBS’+4>¢GS" =-;-xsau£

= 70.438 N/mm?, Ans.

Mohr's circle is a graphical method of finding normal, tangential and resultant stresses
on an oblique plane. Mohr's circle will be drawn for the following cases :

(i) A body subjected to two mutually perpendicular principal tensile stresses of unequal
intensities.

(i) A body subjected to two mutually perpendicular principal stresses which are
unequal and unlike (i.e., one is tensile and other is compressive).

(iii) A body subjected to two mutually perpendicular principal tensile stresses accompa-
nied by a simple shear stress.

3.5.1. Molir's Circle when a Body is Subjected to two Mutually Perpendicular
Principal Tensile Stresses of Unequal Intensities. Consider a rectangular body sub-
jected to two mutually perpendicular principal tensile stresses of unequal intensities. It is
required to find the resultant stress on an oblique plane.

Let 6, = Major tensile stress

0, = Minor tensile stress, and
8 = Angle made by the oblique plane with the axis of minor tensile stress,

Mohr's circle is drawn as : (See Fig. 3.18).

Take any point A and draw a horizontal
line through A. Take AB=0, and AC'= g, towards
right from A to some suitable scale. With BC as
diameter describe a circle, Let O is the centre of
the circle. Now through O, draw a line OE
making an angle 26 with OB.

From E, draw ED perpendicular on AB.
Join AE. Then the normal and tangential stresses
on the obligue plane are given by AD and ED e 218
respectively. The resultant stress on the oblique :
plane is given hy AE.

From Fig. 3.18, we have

Length AD = Normal stress on obligue plane

Length ED = Tangential stress on oblique plane

Length AE = Resultant stress on oblique plane.

Radius of Mohr's circle = —"‘;J

Angle ¢ = obliquity.

Proof. (See Fig. 3.18)

€O = OB = OF = Radius of Mohr's circle = "_;;;'1

AO =AC+ CO
- a, -0y 2034+0,-0C, O, +0y
0OD= 0OF cos 20
=91-% .20 ( gg,ﬂ;_ul]
2

AD=AO0+ 0D

=Ul;U:+UI;G=mm

=g, or Normal stress

and ED = OF gin 28

32';—01&1129

= o, or Tangential stress.
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(i) Normal stress is along the line ACB. Hence maximum normal strese will be when
point E is at B. And minimum normal stress will be when point E is at C, Hence maximum
normal stress = AB = ¢, and minimum normal stress = AB=ga,.

(ii) Tangential stress (or shear stress) is along a line which is perpendicular to line CB.
Hence maximum shear stress will be when perpendicular to line CB is drawn from point 0.
Then maximum shear stress will be equal to the radius of the Mohr's circle.

{Ua)nu = 9-}2_01'
(iié) When the point E is at B or at C, the shear stress will be zero.

(iv) The angle ¢ (which is known as angle of obliquity) will be maximum, when the line
AE is tangent to the Mohr's circle.

3.5.2. Mohr's Cirele when a Body is Subjected to two Matually Perpendicuolar
Principal Stresses which are Unequal and Unlike (i.e., one is Tensile and other is
Compressive), Consider a rectangular body subjected to two mutually perpendicular prinei-
pal stresses which are unequal and one of them is tensile and the other is compressive, It is
required to find the resultant stress on an oblique plane.

Let o, = Major principal tensile stress,

o, = Minor principal compressive stress, and
8 = Angle made by the oblique plane with the axis
of minor principal stress.

Mohr's circle is drawn as : (See Fig. 3.20)

Take any point A and draw a horizontal line through A
on both sides of A as shown in Fig. 3.20. Take AB=0,(+) towards
right of A and AC = 0,(-) towards left of A to some suitable

scale. Bisect BC at (). With O as centre and radius equal to CO
or OB, draw a circle. Through O draw a line OF making an D B
angle 20 with OB. '
From E, draw ED perpendicular to AB. Join AE and CE.
Then normal and shear stress (i.e., tangential stress) on the
oblique plane are given by AD and EI. Length AE represents
the resultant stress on the oblique plane. Fig. .90
.~ From Fig. 3.20, we have
Length AD = Normal stress on oblique plane,
Length ED = Shear stress on oblique plane,
Length AE = Resultant stress on oblique plane, and
Angle ¢ = Obliquity.
Radius of Mohr's circle = CO or OB = 5%1
Proofl. (See Fig, 3.20).
CO = OB = OE = Radius of Mohr's circle
51 +9;
2
AO=0C-AC
=SptYs . 9 toy -20; _©,-0y
' 2 2
AD=AO0+ 0D
=A0 + OB cos 20 (> OD=0E cos 20)
=202 D12 cos 20 [ O = Radius = 21224 ]
= g, or Normal stress
and ED = OFE sin 26
=0t ;ﬂ sin 20 [ oE=21""1 ;G""]

= g, or Tangential (or shear) stress,
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3.5.3. Mohr's Circle when a Body is Subjected to two Mutually Perpendicular
Principal Tensile Stresses Accompanied by a

Simple Shear Stress. Consider a rectangular body u?; 44
subjected to two mutually perpendicular principal - T LL ! T T c
tensile stresses of unequal intensities accompanied . _
by a simple shear stress, It is required to find the g >
resultant stress on an oblique plane as shown in o, «— LI
Fig. 3.22. < »
Let o, = Major tensile stress . h E 1% *
6, = Minor tensile stress l l t "l l
t = Shear stress across face BC and AD v '.:: vy

8 = Angle made by the oblique plane Fig 3.9
with the plane of major tensile stress.

According to the principle of shear stress, the faces AB and CD will also be subjected to
a shear stress of 1.

Mohr's circle is drawn as given in Fig. 3.23.

Take any point A and draw a horizontal line through A.

Take AB = 0, and AC = g, towards
right of A to some suitable mn’]a. Draw
perpendiculars at B and C and cut off BF
and (G equal to shear stress T to the same
scale. Bisect BC at O. Now with O as centre
and radius equal to OG or OF draw a circle.
Through O, draw a line OE making an
angle of 20 with OF as shown in Fig. 3.23.
From E, draw ED perpendicular to CB.
Join AE. Then length AE represents the
resultant stress on the given oblique plane.
And lengths AD and ED represents the
normal stress and tangential stress
respectively.

Hence from Fig. 3.23, we have

Length AE = Resultant stress on the oblique plane

Length AD = Normal stress on the oblique plane

Length ED = Shear stress on the oblique plane.

Proof. (See Fig. 3.23).

1
Co= CB='£|UI——0’] ( CB=90,-0y)

L

2
1

AO=AC+C0=0,+73 [0,-0,

_203+0,-09; _9,+9%;

2 2
AD=AO+ 0D
=11;—°1 + OF cos (20 - ) [+ OD=OE cos (20 - a)]

=23%1+03[mm¢u+ﬂn23ﬁnn]

=1';—“’ + O cos 28 cos a + OF sin 20 sin o

=1'%:- + OE cos a . cos 20 + OF sin « . sin 20

="—l;—“1 + OF cos o . cos 20+ OF sin o . sin 20
(+ OE = OF = Radius)
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=5'J—f_,—°-1 + OB cos 20 + BF sin 20
(~+ OFcosa=0B, OFsina=BFR

=9—'%1 + CO cos 28 + T 5in 20 (+ OB=CO,BF=1)
=EJ—;3-1+9J;—"*-euza+uinze [ Cﬂ=%]
=g, or Normal stress
Now ED = OF sin (20 - o) = OF (sin 20 cos o — cos 20 sin o)

= OF sin 20 cos a — OF cos 28 sin a

= 0F cos a . sin 20 - OF sin o . cos 28

=()E cos a . sin 20 — OFE sin & . cos 28 (> OE= OF= Radius)
= 0B . sin 20 — BF cos 20 (+ OFcosa=0RB, OFsin a= BF
=00 . sin 20 - Tcos 20 (-~ OB=CO,BF=1)
31‘;—ﬂlsin29-tou¢m ( L‘D=11;—°1]

= g, or Tangential stress.

Maximum and minimum value of normal stress. In Fig. 3.23, the normal stress is
given by AD. Hence the maximum value of AD will be when D coincides with M and minimum
value of AD will be when ) coincides with L.

Maximum value of normal stress,
(0,) 0as =AM = AO + OM

= 21292 4 oF ( AO;EL;-E-LOMmF:Radm]
=ﬂ;—"1+,,'os’+aﬂ (> Intriangle OBF, OF = JOB® + BF?)
2
_o o, u,—u;} sl [ O.B:E-"—G’E.BF=1]
2 2 2

Minimum value of normal stress,
(6,) s =AL=A0 - LO

- 9_1.;_“1 - OF (- LO=OF= Radius)

2 31%% _ 19 'U2]3+11
2 2
(i) For maximum normal stress, the point D coincides with M. But when the point D
coincides with M, the point E also coincides with M. Hence for maximum value of normal
stress,

Angle W=a (> Line OE coincides with line OM)

a
7, 0= E i)
Also mn%:mnu=£; ’ ( BF.-,t_oB,EJ._:El.]

OB o,-o; 2
2
" 2t
o, -0y

(ii) For maximum and minimum normal stresses, the shear stress is zero and hence the
planes, on which maximum and minimum normal stresses act, are known as principal planes
and the stresses are known as principal stresses.
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(#if) For minimum normal stress, the point [) coincides with point L. But when the point
D coincides with L, the point E also coincides with L. Then

Angle W=x+a (-~ Line OF coincides with line OL)
n a 5
A 6= §+E ..{id)

From equations (i) and (if), it is clear that the plane of minimum normal stress is in-
clined at an angle 90° to the plane of maximum normal stress.

Maximum value of shear stress. Shear stress is given by ED. Hence maximum value
of ED will be when E coincides with G, and D coincides with O.

Maximum shear stress,
o), =0H=0F (+ OH = OF = radius)
= JUB’ + BF*® (+ Intriangle OBF, OF = JOB* + BF*)
- [[er=02)', [ 03=“l"’=,ﬂp=:]
2 2
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BENDING MOMENT

Beam: - Beam is a structural member which is subjected to transverse loading.
ar

A stroctural member whach 1 acted upon by a system of external loads a1 right angles 1o 11s axis s
known as beam

Types of Beam: - The beams are classified into the following types

| Cantilever beam
Simply supported beam
3. Overhang beam
. Fixed beam or built-in beam
5, Continuous beam

Cantilever beam; = A beam which 1s fixed ai one end and free at other end, 15 known as
cantilever beam, shown in the Figib.|

Simply supported beam: - A beam supporied or resting freely on the supports at its both
ends, 15 known as simply supported beam, shown in the Fig.6.2

Overhang hbeam: - If the end portion of the beam 15 extended beyond the support, such
beam 15 known as Overhang beam, shown in the Fig.6.3

Simply supporied Crhvarhangng

PN porkon |
- v e




Fixed beam or built-in beam: - A beam whose both ends are fixed or built-in walls, is

known as Fixed beam. A Fixed beam is also known as built-in or encasired beam_shown in
the Fig 6.4

. Continuous beam: - A beam which is provided with more than two supports is known
as comtinuous beam, shown in the Fig 6.3

Types of Load:-
A beam is normally horizontal and the loads acting on the beams are generally vertical.
The following are the important bypes of losd ncting on a beam

1. Concentrated or point load,
2. Uniformly distributisd load, and
4. Uniformly varving load
I. A conecntroted lond iz one which 15 considersd 1o

it at n poind, although in practice it must really be distributed over a small neen, In Fig. 6.6, W
shows the point load

"

A uniformly distributed lond is one which is spread
over i beam in such o manner thot rate of lading w is aniform aleng the length (Ce,, each unit

I ||‘r|'|| L= |.||,|Lh'|| to the same rote) as shown ]'Ilj.' 6.7, The rate Ell:il.fl'.:lg Iqi"l,[ln'h'lvl'i’.ll-.lu
MNim run. Uniformly distributed lond i, representod by wad.l,

For solving the numerieal problems, the total
uniformly distributed load is converted into o point load,
ncting ot the eentre of uniformly distributed Joad

. .-1|.l.t.r:=E|lr|||1_|. U Ly . 1 IR Y
ing load is one which 8 spread aver a beam in such a man-

mer that rate of loading varies from point to peint along thie I[

a P

benm o shown in Fig. 5.5 in which load i zero at one ond
and increases uniformly to the other end. Such load is known

ns trinngular load




For solving numerical problems the total load i equal to the area of the triangle and thia
total lond is nesumed to be acting at the C.G. of the triangle f.e., st a distance of 2 rd of total
length of beam from lift end

Concepts of shear force and bending moment
Shear foree

he shearing foree at any section of beam represents the tendency for the portion of beam to
one side of the section of slide or shear laverally refative to the other portion.

The resultant of the loads and reactions to the lefl of A 15 vertically upwards and the since the
whole became 15 i equilibrium, the resultant of the forces 1o the right of AA must also be F
acting down ward. F is called the shearing foree.

Definiti

The algebraic sum ofall the vertical forces either lefi or right of the section of the beam is
known a5 Shear Foree. 1t is denoted by 5.F

Shearing force will be considered positive when the resuliant of the forces to the lefi is upwards

or 1o the right in downward
i +

Concepts of Bending Moment
Bending Moment

Ihe algebraic sum of moments of all the vertical forces acting either left or nght of the
section of the beam 15 known as Bending Moment.at 15 denoted by B.M

In a small manner it can be argued that 1F the moment about the section AA of the forces o the
lefi 15 M clockwise then the momemt of the forees 1o the right of AA must be anticlockwise. M
is called the bending moment,
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Definition

The algebraic sum of moments of all the vertical forces acting either left or nght of the
section of the beam is known as Bending Moment it i denoted by B M

Bending moment will be considered positive when the moment on the lefi of section 1s
Clockwise and on the night portion anticlockwise, This 15 referred as sagging the beam because
concave upwards. Megative BM 15 termed as hogging. A BMD 15 one which shows the
varation of bending moment along the length of the beam

Shear Force Diagram and Bending Moment Diagram

A shonr furee dingram is one which shows the variation of the shear fireo along the length
of the beam. And a bending moment diagram i one which shows the variation of the bending
mament along the length of the beam

NTS FOR DRAWING SHEAR FORCE ANI

In Art. 6.2, it 15 mentioned that the shear foree dingram is one which shows the varintion
of the shear foree nlong the length of the beam. And a bending moment dingram is one which
sghow the variation of the bending moment along the lengih of beam, In these dingrams, the
shear foree or bending moment are represented by ordinntes whereas the length of the beam
rerpiraen ba o heciasa

The following are the important points for drowing shear foree and bending moment
dingrams

1. Considor the left oF the rght portion of the section

2. Add the forces Lincluding reaction) normal te the beam on one of the portion. [T rght
portion of the section is chosen, a force on the rght portion acting downwards is positive while a
force acting upwards i# pegative

IT the left portion of the section i chosen, o foree on the lefl portion acting upwards 15
pasitive while o foree neting downwards is negative

3. The positive values of shear foree and bending moments are plotiod above the base line,
sinid TR il..'l' vl ues bsie iy ||||' b |inae,

4, The shear foree dingronm will increase or deerease suddenly Le., by & vertieal stroight
line at a section whers there 8 nvertical point load.

&. The sheear foree between any two vertical loads will be constant and hence the shear
foree dingram between two vertical loads will be horzontal

6. The bending moment ot the two supports of o simply supported beam and ot the fres
end of o cantilover will be zero
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SHEAR FORUCE AX NDING MOMENT DIAGRAMS FOR A CANTI
HEAR FURLEAS Rl et IR T Rt EAR i
| A POINT LOAD , HE FH J

Fig. 8,14 shows a cantilever AR of length L fxed ot A and free st B and soreying s point
load Woat the free end B

[FITg— Flsirssr

Frr
T
Fr
il
Fr

B M dacram

Lt F = Shear foree at X, and
M = Bending moment at X

Take i section X at o distanes ¢ from the free end. Consader the right portion of the
et hn.

T shear force at this section i equil to the msultant feece acting on the right portson of
the given section. But the resultant force acting on the rght portkon at the section X is Wand
neting in the downwnrd direction. Bul n foree on the right portion acting downwards (s considered
positive. Henoe shear foree ol X is positive

FusW
Thi shear force will be constant it nll sections of the cantilever between A and B ns there
is no other losd between A and B, The shear foree dingram i shown in Fig, 6,14 (5L

Bending Moment [Nagram
I'he bending moment at the section X is given by
M==Wsxa T

{ Bending moment will be negative 82 for the right portion of the section, the moment of W
at X is clockwise. Also the bending of eantilever will take place in such a manner that convexity
will b at the top of the beam).

From equation (1], it is clear that B.M. at any section is proportional to the distanee of the
séction from Lhe Mree end.

Mr=0Oie, ol BM. =20

AMrelie,atA, BM = Wx L

Hence B.M, follows the straight line law, The B M. dingram is shown in Fig. 6.14 ieh At
point A, tnke AL = W x [ in the dewnward direction. Join paint B te O

Thi shear foree and bending moment dingraima for several concentrated loads acting on a

cantilever, will be drawn in the similar manner




Fig. 6.16 ghows a cantilever ol length L fixed ot A and carrying o uniformty distriboted
load of e per unit length over the entire length of the cantilever

w Par ursd langin

PI.

il

...:.....;-

a
T S
B L - [}

5.F. dhagram Base e

; ——

Bl g

A
il
W el

.J"‘I-f-'-‘-_ﬁ 0

I'nke o section X at a digstance of x from the free end B.
Lt F, = 8hear foreo at X, and
M. = Bending moment sl X
Here we have congidered the right partion of the section. The shesr foree il the section X
will be equal Lo the resulbant foroe acting on the vight portion of the section. But the resulian
foree on the rght portion = w » Length af right portion = to.x,
Ihis reauliant foree i8 netinge downwards. But the resultnnt foree on the rught poriion
neting downwards (8 eomsidered positive. Henoe shoar farce at X s positive
|I"-I = 4 X
The above equation shows that the shear foree follows a stroight line low
At B, x = D and hence F =i}
AMA xr=Loand henee  Fo=el
Thes sheay foree dingrim is ahown in Fig. 6.16 1k
Hending Moment Diagrom
It is mentioned in Art. 6.4.3 that the uniformily distributed losd over nsection 15 converted
inta point lnad neting at the C.G. of the section
The bending moment ot the section X 15 gyven by
M = -(Total load on rght portion
% Distanee of C.0G, of rght portion from X
1 -
2

{The bending momont will be negntive ns for the right portion of the section, the moment

1

of the load at x 15 elockwizse, Also the bending of cantilever will take ploce in such o manner that
convexity will be nt the top of the cantilever),

From equation (), it 18 clear that B M. at any seclion is proportional to the squire of Lthe
st nnoe -\..-Illh.l' aertion fmom Lhae I.J'rr rllti This |I|l||.||'||| ¥ '.Iﬂl'.l!ﬂ'lll'

At II' ¥ =i hl'rll,'l.' ”I = L)

At A, x = L hence M
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A cantilever beam of length 2 m carries the point logds as shown in
,r'u_r a.15 l|I.l|'|||| ihe shear ||.-l|| anid .rl: M f.'ru,{r anex for dhe canlilever beom
Caawien ¢
Refer ta Fig, 6.15

160 N

Y i iR dasssasniid®

% W ;

A B ¢ 'LL|'..|1|.'-| :
Basa fing

&
; L

- S = }

TETEFTTEERTES T rPrrrrrrrrrrrrrrrrrrrre=1

e A

¥
A

Shear Force [Nagram

The shear foree ot [ 5 + 800 N, Thiz shear force remains constant between [ and ©
Ad i, due to point load, the shear foree becormes {800 + 5000 = 1300 N, Between O and B, the shear
foree remoins 1300 K. At B again, the shear force beoomes ( 1300 « 300 » 1600 N, The ahear
firee botwern B and A remaine constant and equal to 1600 N, Henee the shear foree at diflferent
points will be ns follows

8F, at D, F, =+ B00 N

SF.all, Foo= 4 B0+ 500 = + 1300 N

8F. aLh, Fp = + B0 + 500 + 300 = 1600 N

SF. aL A, F,=+1600N

The shear foree, diagram 15 shown in Fig 6,15 (6) which is drawn as ;

Dirmw o horizontal [ine AD as base line. On the bose line mark the points B and C below
the point loads. Take the srdinate [ = 800 N in the opward direction. Draw 6 line EF parallel
to AlD, The point F {2 vertieally above £, Take vertienl line FG = 500 N, Through &, deaw o
horizontal line G in which point H ig vertieally above 8. Draw vertieal line HI = 300 N
From /. draw o horizontal line LJ. The paint oJ i@ vertically nbove A This completes the shear
force dingram
Bending Momend Diagran

The bending mament at [ s zero

{1 Tha bending moment at any section between O and 1) at o distanee v and I3 i3 given by,

M= — B0 x x which follows a straight line lnw.




At C, the value of x = 0,8 m
B.M. at M. = =500 x 0.8 = = B40 Nm
i) The BM, st any section between 8 pand © at & distance x from J¥ is given by
MO r=08and at B, ¢ =08+ 0.7 = LB m. Henee here x varies from 008 (o 1.6
M_= =800y =500 (x - 0.8)
Bending maoment betwoon B and C also vares by o straight Hoe law
BM. at B s obtained by substituting * = 1.5 ni o equstion (i,
: M, =~ B0 x 1.5 - 500 (1.5 - 0.8
== |0 = 350 = 1660 Nm
i) The B.M. at any section between A and B at a distance x from [? 15 given by
(At B, x = 1.6 and at A, x = 2.0 m. Hence here x varios from 1.6 m to 2.0 m)
” = = B0 x =0 ix =08 =300 x5 =15
Bending moment between A and B varies by o stralght line law
B.M. st A s obtained by substituting x = 2.0 m in equation (£,
.“1 = = A0 x 2 - 50 (2 - 0.8) = 300 (2 - 1.5
= - S x 2 - 500 x 1.2 < 300« 0.5
3 180D = &00 = 150 = 250 Nm
Henen the bending mamonts ol differont paints will be as given below
,U_,‘ =
M, =~ 640 Nm
M = - 16560 Nm
1wl M, ==%50 Nm
The bending moment dingram (4 ahownon Fig 6,15 (e which 18 drawn as
Drnw a horizental line AL 5z o base line and mark the points B and C on thias line. Take
verticnl lines 07 = 640 Nm, B8 = 1560 Nm and AA" = 2350 Nm in the downward direction. Join
poinls 0, C°, B and A" by straight lines. This cempletes the bending moment dingram
LA cantileverof fength 2.0 m sarres o pnifornely distribated lood of T RNV
run opera length of 1.5 m from the frev end. Drow the shear foree and bending moment dingreoms
for the canfilever.
Liven
DL, W= 1 kN'm run
Refer 1o Fig. 6.17
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Shear Foree Dagram
Consider any section between C and M n distanee of x from the free end 8, The shear foree
ot the seetion is given by
F =i {+ve sign is due to downward foree on fght portion of the weetion
= 1.0 x x {2 =140 kMN'm run)
At H, 3 = 0 henee F o=l
ALC, z=15hence F = 1.0x15= 1L5kN.
iz shenr foree follows n straight line lnw between O and H. As between A and O there s
o load, the shear foree will remain constant. Honoe shenr force betwoon A amd C will be represented
by i horizontal line.
Thl' Jl'ul ar foree Ij...l._'rull'l i.'\- 'hll'u"all in [‘I||_r 8 |T & in which
Foal,F.a15kNand F, u F. = 1.5 kN

Heniling Movuent Illll-'lA'-"--”:
LA T-l'll-'h'rl-l‘;ln;: moment at ANy sPcion h‘l'!'ﬂ.l'i'll i |.|r|11. “ {11 |I.l|,'|-r||l'll_1l.| from Ehir Tros rn-',
B is given by

i The bending moment will be negutive as for the right portion of the section the moment
of lond at x 18 clochwise |

At B, 1 = U henoe .H... z

ALL, r= 106 heooe M. = " 1 1VES Sm

['Il'hl'll LT RE R R LY loGr 1.‘|.,|I, I_]!|_ tu;|||_||l.-r_' el h,,||'i.;'l. .ll:d"\vl.rl_“ll# 1 '|;.,.r.||_u.||., |;|u
Bt ween O and H.

(e The benafing moment ot sy section betwesrn A and O at w distance @ firom thie Troe and
H s ohtained as ; (here x vares from 1.5 m o 200m)

Total load due to U0 s wx 1.5e 1.6 kN

. LA il
This losid 1 acting al & distunce of -.JI 0.75 m from the free end B or 5t o distance of

(x—0.75) from any section betwesn A and ©
Moment of thia lond st any section between A and O st n distanee x (rom (res ond
{Load due o LD ) = ix = 0.75)
”. 1.5 x ix = 0.76) 1
=W BEET |# |||,|- Lk L'th.'lv._l.l\. i Mol fur l'||:hI ot |
From equation (i 1 it is clear that the bending moment follows straight fine liw between A
and
AMCx=10mbenee M.=-LH(LS-070 =~ L1256 Nm
AtA x=20mhenee M, =- LA8(2-0.75)=- 1.BT5 Nm
Now Lhe bending moment Ii4p|;|':| m & drawen a shownin F E B.17 ied ]:L!hiu:hqgr:m: linie
= 1125 Nm and AA" = LATH Nm. The potritz B and O are on o parbolic corve whereas the
'|l|-:rI.-.1. i r".l]l'_]ll-illi'l.l t!_'l'.l. I-IF.1.|I|‘||. I;l!l'

REX _F-rll' lw-_'v\l--' l'rl?_ [ F‘E }"{_‘ -\.l |||’ Y E

AH "rl bl W"F{L 14 1-1“.':'??:-\ 'Q“lu s ¥ KLl

Fig. 5.22 shows n cantilever of length L fixed ut A and carrving a gradunlly sarving load
from gero at the free end to e per unit length at the fived end
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Fig, (.22 ghowd § tilever of length L fixed at A and corrving o gradioally varving load
from tero ot the feee end to o T Lt i|'||;|_'1.5'l at the Mxed cnd
1 = f 1
EEEEEREEEREEELER =

L
Lo dhagram

L —

r.r.--"
._-.--'"“' -

B dagras

Take n section X at n distance x from the free ond B
Lt F = Shear foree at the section X, and
M= Honding momient nt the section
Lt s first find the mte of loading at the section X, The rate of loading s zero ot B and is
1 per matee man at A, This means that eoto of loading fae s length L is e per unit length. Hene
robe of loading fur n lengeth of x will be I; « & per unii length. This s shewn in Fig. 6.22 (a) by
T

I"i. LY |'|l|_':". 1 ;I.['\-I'I l,l|'|'l.'||l s |n_||1_ ||| WITIRET ”l'l||\|' r\, = —

The shear 1I:I|'| w and the '-|1"'.?|l||_l'|. it o distanee ¥ from (ree end 12 ZIven |:'|_'I.
.‘*'_ s Total load on the eantilever fora lergrth x from the frie end &
& Aren ol triangle BCX
X
i e Xl == .
) AB . X( L o XB = XC i, % |
Z o g i L)

'

Eguntion {11 shows that the S.F. voones according to the pnrnbolic Inw
1 B f

AL B, x = () hence F o= i X .!.l'

L
[T Pl T §
2L 2

=)

AL A, x = [ hene F,

The bending moment at the section X at a distance x from the free end B 12 given by,
M ==iTotal load for a length xb x Distance of the lond from X

i Aren ol trinngle BOCX) = Distance of C.G, of the triongle from X

J
| wx” ] ey

BT GL




|:‘:||_II"-!;||I| (g3 | shows rh:, i I'i "-1 YAFHES .'.-l_'r.:.-rl:'|||+' { (] I:hr |_'.,b-l{ 1,,.!11.

MB xwOhenee M,

MA =l bene M

1
A cantilever of lengith 4 m corries a gradually carving load, zero al the
free encd bo 2 &N{m ok the mel. Dhraie the S.F. and B.M. dicgrams for the cantilever.
Giiven
Lasrigths, ;= d W

L st fised end. [ 2 kM m
Shear Foree [iagram
The shear force i8 zoro ot . The shear force at O will be equal to the area of load dimgrmm
Al
4

Hhonr foree at ' =

2 ,
=4 kN
2
The shear foree between A and B varies seeording to parabalic law
Bendling Moment [hagram
The B, 6t B is zero. The bending moment at A is equal to

A Do f 2
M,=-E L £X4 o 523KNm
(& ]
Thix B AL Betwoen A and B varies acoording to cuble low

i I
& kbm 3 I T

¥ .;!fi‘lil‘i!il‘!!il*l‘v
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dingrar Hasy

Bending Moment [
BM. ut A,
H.AL nt © dx2=+BkNm
B at 1, M, = de2=sdxd-3xd=4+10kNm
BM. a5 M =0

The bending moment diagram is drawn as shown in Fig. 8.28 ic)

Diraw the shear foree and beading mioment diageam for a simply supportid
e LR .|'|'|u.l.l||: 9 i gael CEFFVERE G i sl il imtes bl Toad of 10 & Niwi foF o disfance of &
[ [T .I'.'Ifi' eHd. Alds wieglale the wocimiim HM. ag ihe seefion

First caleulate reactinne '”. .|H|’| .H',
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Taking moments of the forces aboul A, we gt

R wts 10x6x-

p
- = 180
3

Ry =120 a0 kN
I i

Rt = Total load on beam - R = 10 % 6 - 20 = 40 kN
Shenr Foree iagram
Congider any sectlon nt n distones 1 fram A between A and C, The shear fores nt the
geciion i& given by,
FusR, ~105m+40-102
Faquation (1) shows that shenr foree varies by o stroight line lnw between A and €.
At A, x =0 henee Fi=+dd=0=40 kN
AL €, x = 6 m hence Fro=4+ 40 =10 x6 =20 kN
The shear foree at A 18 + 40 kN and at © is - 20 kN, Also shear foree between A and O
varies by a straight line. This means that somewhere between A and C, the shear foree |5 zero
Let the 5.F. is zero at x metre from A, Then substituting the value of 8.F. (e F ) equal to zero
I eqruaiiom (i b, wie get
0= 40 = 10x
40

I = =4 m
10

Henee shear foree 18 2ero at o distanee 4 m from A

Thie shear foree 18 constant bedween O and B, Thiz equal to - 20kN

Now the shenar firee dingram is drawn ns shown in Fig. 628000 In the shear foree dingram
distanes Al = 4 m. The pont 17 12 ai & distonee 4 m from A,

B.M. Ivagram
The B at any seetion between A and C at a distonee x from A is given by,
X '
M=R xx-10.x = 4y — hx

Equatioen (i) shows that B.M. varies nccording Lo parnbalic lnw between A and 0
At A, r =10 heneoe ."rfl= Jx0-Gxl=0

At O r = & m hence Mm 40 % 6 =06 x 6 = 240 - 180 = + 60 kNm

At D, x = 4 m hence M= a0x4-5x 4" = 160 - 80 = + 80 kNm

Thie bending moment between C and 8 varies necording to linear Inw

BM, at B s zerm wherens at O 15 60 kNm.

The bending moment diagrm is drawn a8 shown in Fig. 6.28 (¢}

Maximiem Bending Mormen!
The BAL is maximum ol o poinl where shear foree changes sign. Thia menns that the
point where shear foree becomes zere from positive value to the negative or pree-versa, the B.M
nt that point will be maximum. From the shear force dingram, we know that st point [J, the
ahiear foree I8 zoro after changing its sign. Henes B, (& moasimuom st point 2, But the BM. ot
L ia + BO kNm.
Max. B.M. = + BD kiN.

f Draie the shear force and BM. dingraims for a simply supported béam of
lengreh 8 m and carrving a wniformly distribuled lood of 10 kXim for @ disfaree of 4 m as shoien
in Mg 6.25

First enleulote the reactions i, and K.

Taking moments of the forces about A, we et

Hu‘:h:=|1'-11c|]11.|:12|l
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i |
|
I
A

W

L LR RS S

B, cagri

: 130 b
ty = = 16KN
Total load on beam - K,
= [0x4 15 = 25 kN
Eheor Foree Diagram
The ahear foree at A 18 « 26 kN, The shear loroe remains constant between A and O and
cqual to + 25 KN, The shear force at / is = 15 kN, The shear foree renning constant between
B nnd £ and squal to - 15 kN, The shear foree ol any section between Cand 0 nt o distance x
from A i& given ||}
= [ -]
ALLC, © m ] hence el 2= 1] = 1=+ 25 kN
Arl) x 4] E'll"ll.l_' F_.I 20 15 1} 15 kN
The shear force ot O 8 + 25 kN and at 17 s = 16 kN, Also ghear foree botween O and 1
viiries by s stridght line law. This means that somewhere betwieen O and [, the shedr foree is
zern, Lot the 8 F. be zero at ¥ metre from A, Then substituting the value of 3 F, (Le, F ) equnl
Lo g ro on egudilaog LY, Wl get
0w25-10ix-1)
- 10z + 10
35
Is=
10
Henee the shear force s #ero at a distance 3.5 m (rom A

= 3.5 m

Henee the distanee AE = 3.5 m in the shear foree dingram shown in Fug, 6.2 (b,
B Diagram
B.M. nt A 15 zero
“,:“ nk i nl=n gem
BM. atC ||I.I|H. | h 25 kMNm

The B.M. at any section befweon O and D at a distanee x from A is given by,
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At r=1 henee ey E 1F = 25 kiNm
ALl x=5 heoee M, =25x5- 5l =125 - 80 =48 klNm
AL E, r = 4.5 hence M, =25 x5 - 504! F=87.5-31.25 = 56.25 kNm
B.M. will inerease from 0 at A to 25 kNm at C by o straight line law, Betwoen C and D the
B.M. varies according to parnbolic law as iz clear from squation Ui, Between C and [, the BM
will e maximum ol E. From I to B the B.M. will decrease from 45 KENm at D to 2ero ot H
nocording to gtraieht line lnw,
R FORCE AND BENDING MOMENT DIAGRAMS FOR OVER-HANGING
IT the end portion of 6 beam is extended bevond the support, such beam is known as
everhanging beam. In case of overhanging beams, the B.M, i3 positive beiween the two supports,
wivereas the B.M. 18 negative for the over-hanging portion, Henee at some point, the B.M. 18 gero
nfler changing its sign from positive Lo negniive or tiee versa, That potnt is known as Lhe porsi
of contraflesure or point of inflexion
It ia the point where the BAL i8 2ero after changing its
gign from pasitive Wo negative or vice persa
i If.l'l'll.' e mhmar [y v v BT '-”'i.' .'?Ill.'hr.'.'."rJ'l:Ij,.'."rr.'flli o theooer .f.-r|.'|;_'J ng
Beam carrving uniformly disfribuled foad of 2 BN m over the entire length ax showen in Fig, .35,
Alza lecale the point of contrafTexiire
First caleulnte the reactions K, and K,
Taking moments of all forces about A, we get

a
H'“ i m®xbx ,; 36 -+ Total logd on benm = 2 x 6= 12 kN, This

load ia neting sl a distanee 3 m from A

B M e

= Total lond -R;=2x6-0=3 kN




Shear I‘-Iln"l i .I'.i'll.'_;,_r.l'rr.'rl
Shear force at A = +f, =+3 kN
i{} The shear foree at any section between A and N at a distance x from A is given by,
.I’",' = R, -2 [ R,m3)
= 3-2x (]
AlA, x=0hence F, a3 kN
At K, x = 4 henee Fpm d=2xdm=5KkN
The shear force vares according to straight line law between A and B, At A, the shear
fiores is positive whereas at B, the shear force is negative. Between A and B somewhere 5.F. is
zera, The point, where 5.F. is zero, is obtained by substituting F_ = 0 in equation (i),

L -
0D=2d=2Zx or xr===16m

Henee S.F. is zero at a distance of 1.6 m from A {or S.F. is zero at point L),
{if} The 5.F, at any section between B and C at a distance r from A is given by,
F oo +R -dxl2+Rp-x-4)x2u3-B+0-20x-4
= 4-2x-4)

AtB. x=dmhence Fy = 4-24-4)=+4 kN

AMC xulimhence Fomd=26=-4iul)

Hetween M and O nlso 5. F, vanes by o stroaght line lnw. At B, S5 F. 15« 4 kv and nt O, 5.F
I8 2ern,

The 8.F, dingram is shown in Fig. 635 (b
Hending Moment [Nagram

The B.M. at A is zero,

iiiThe B.M, at any section between A and B at a distanee r is given by,

M =R xx-2xx ;
ax = I
AMA z=s0hence M, = 0
At B, x m 4 henee .'.Fl.! s 3xd=4*"m=d4d kNm
Max. B.M. occurs at [, where 8.F. is zero after changing its sign.
AtD x=lbhence Mpo=3x 15~ 15=4.0-225=225 kNm
Thie B.M. between A and B varies according to parabolie law.
(i The B.M. at any section between 8 and C at a distance x is given by,
M = R ix-2xxx i f H”x x=4)
dr=x'+Bx-4
AtH z=4 hence M, Jxd=-4"+9d-4)=4 kNm
At C, x = & hence .“I. E JxG-6F+Mi-4m]lB-36+18=0
The B.M. diagram is shown in Fig. 6.35 ie).
Poinit of Confraflexure
This point will be between A and B where B, 158 zero after changing its sign. But B.M. at
any section at a distance x from A between A and H 18 given by equation (i) as
M =dr-2x
Equation M _to zero for point of eentrallexure, we gel
Omdr-x!mxld-x)
J-xzu (= xecannot be zero as B, is not
changing sign at this paint)
=g

Henee point of contraflexure will be at a distance of 3 m from A.
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THEORY OF SIMPLE BENDING

When seme external load acts on a beam, the shear foree and bending moments are set up
it all sections of the beam, Due to the shear force and bending moment, the beam undergoes
certain deformation, The material of the beam will offer registance or stresses agminst these
deformations, These stresses with eertain assumptions con be caleulated. The stresses introduced
by bending moment are known as bending stresses, In this chapler, the theory of pure bending,
expression for bending stresses, bending stress in symmetrical and unsymmetrical seetions,
strength ol a beam and composite beams will be diseussed,

PURE BENINNG OR SIMPLE BENIING

If a length of 4 beam is subjected to n constant binding moment nnd ne shear force
(L., zero shear foree), then the stresses will be et up in that length of the beam due to B.A. only
and that length of the beam is said to be in prre bending or simple bending. The stresses set up
in that length of beam are known as bending strisses

L

L : 5.F. ceagram

A beam simply supported at A and & and overhanging by same length at each support
iz shown in Fig. 7.1. A point load W iz applied at each end of the overhanging portion. The

SF. and B.M. for the beam are drawn as shown in Fig. 7.1 (6) and Fig. 7.1 te) reapectively
From these diagrams, it is clear that there i8 no shear foree between A and B but the B.M.
between A and B s constant.

This menns that between A and H, the beam i subjected to a constant bending moment
only. This condition of the beam between A and B is known as pure bending or simple bending.
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ASSLINMPTIONS OF THEORY OF SIMPLE BENDING

Before discussing the theory of simple bending, lot us see the assumptions made in the
theory of simple bending. The following are the important sssumptions :

1. The material of the beam is homogeneous® and isotropie
2. The value of Young's modulus of elasticity is the same in tension and compression,

&, The transverse sections which were plane before bending, remain plane alter bending

iI.I.'Uc'.l.

4. The beam g imibially straight and all longitudinal Alaments bend into cireular ares
with o eommon centre of curvature.

&, The radius of curvature is lorge compaired with the dimensions of the cross-section,

6, Each laver of the beam iz free to expand or contraet, independently of the layer, above or
bl it

IHEORY OF SIMPLE BENDING

Fig. 7.2 (a) shows a part of a beam subjected to simple bending, Consider a small length o
of this part of beam, Consider two sections AR and CD which are normal to the axia of the beam
NN, Due to the netion of the bending moment, the part of length e will be deformed ns shown
in Fig, 7.2 (h), From this figure, it 1s clear that all the lavers of the beam, which were originally
of the aame length, do not remain of the same length any more,

The top laver such as AC has deformed to the shape A'CT, This layer has been shortened in
its length. The bottom laver B has deformed to the shape BTY, This laver has been elongated.
From the Fig. 7.2 (h), it i# clear that some of the lavers have been shortened while some of them
are elongated. At a level between the top and bottom of the beam, there will be a layer which is
neither shortened nor elongated. This laver is known g nebral laver or deidral

— by —w 0

o

lai Before bending B Afer bending

siirface, This tayer in Fig. 7.2 (b) is shown by A" = N and in Fig. 7.2 (a) by N =N, The line of
intersection of the neutral layer on a eross-section of & beam s known as newtral acts (written as
N.AL

The layers above N - N (or N* = N') have been shortened and those below, have been
elongated, Due to the decrease in lengths of the layers above N = N, these Liyers will be subjected
to compressivie stresses. Due to the increase in the lengths of lavers below N - N, these layers
will be subjected to tonsile stresses,




We also see that the top layer has been shortoned maximum. As we procesd towards the
layer N - N, the decreass in length of the layers decreases. At the layer N - N, there is no change
in length. This means the compresgive stress will be maximam at the top laver, Similarly the
increase in length will be maximum at the bottom layer, As we proceed from bottom layer
towards the laver V- N, the inerease in length of lavers decreases. Henee the amount by which
a lnyer inereases or decreases in length, depends upon the position of the Inver with respect to
N = N, This theory ol bending iz known as theory of simple bending

EXPRESSION FPOR BENIDING 5 TRESS

Fig. 7.3 (a) shows a small length & of o beam subjected to a smple bending, Due to the

action of bending, the part of length & will be deformed as shown in Fig, 73000 Let A'B and C°FF

mieet at €3
Let B » Radiue of neatrnl laver A™A"
f = Angle subtended at O by AR and C0F produced.

{) Btress Dingram

Consider o lnver EF at a distance
¥ below the neateal lnver NN, Alter bending this laver will be elongaited to E'F
Urginal length of layer EF = &z,
Alzo length of neuteal laver NN = i,

After bonding, the length of noutral layer NN will reman unchanged. But length of
lavier £'F will incronse, Heneo

"m NN = i,

Now from Fig, 7.3 (b),
NN R=0
EF = (R+vix8 * Radivs of EF = R+ v)
Bt NN NN = &
Henee Wiy Rxt
Inerease in the length of the layer EF
= EF-EF=iR+y)0-R=#8 (v EF=8v=R =8l

= yuH

/
L]
]
)
]
]
L]
L
[}
[}
L)
[}
]
L)
¥
]
]
L)
r
]
L)
]
]
[]
]
¥
[]
]
L)
[}
]
L]
L]
]
L]
¥
[}
]
L)
L)
]
f
]
]
L)
]
]
)
f
L]
¥
]
]
L)
]
]
§
L)
L]
]
)
L]
)
)
]
L)
]
]
L)
L)
)
)
]
]
]
L)
]
L)
r
]
L)
L
)
]
f
]
L)
L]
]
L)
I
)
L)
[
]
]
0
!
¥
)
)
L)
]
i
]
]
]
]
]
]
L)
]
]
L)
]
L)
)
L)
]
]
L)
L
1]
L
!
]
)
]
L]
]
r
1]
)
[]
L]
i
,




e
]
L)
)
L)
L
]
L]
]
)
]
L]
]
[}
L)
r
]
L)
L)
)
]
I
L]
]
4
L]
L]
]
L]
L]
]
]
)
!
L)
L
L)
]
L)
L)
1]
L]
L
]
)
i
]
L]
L)
)
L)
)
L]
L)
L
)
]
L)
]
L)
]
[]
L)
]
]
L)
[}
]
)
i
]
]
]
]
L)
[]
]
]
L)
1]
L]
)
]
)
]
]
r
!
]
L)
|
r
L]
L)
]
L)
L]
[]
]
L]
]
]
L)
L]
L)
L]
]
L]
L)
]
L)
]
L)
]
]
L)
]
L)
]
1)
L)
§
]
]
L)
]
¥
r
]
L)
]
]
L)
]
]
)

*

Strain in the layer EF
Incrense in length
Orymnal length

(v EF=fc=Rx8)

As R ia constant, henee the strain in a faver is proporfional fo 8 disfance from e neuiral axis
The above equation shows the vanation of strain along the depth of the beam, The variation of
striin is linear,

STRESS VARIATION

Lt = Stress in the layer EF
Young's modulus of the beam
Streas in the layer EF
Straun in the laver EF

y
< Strain in EF = =
rain in B

E
o
i
Rince K and B ore constant, therefore sfress in any laver is direcily proportional fo the
distaner of the laver from the newtral fayer, The equation (7.1) shows the variation of stress
along the depth of the beam. The variation of stresa is linear

A

In the above ense, all layers below the neatral laver are subjected W tensile stresses wherss
the layers above neutral laver are subjected to compresgive stresses, The Fig, 7.3 (c) shows the
etress distribution.

Equeation (7,11 can also be written as

S

v R
SEUTRAL AXIS AND MOMENT OF RESISTANCI

The neutral axis of any transverse section of o beam is defined as the line of intersection
af the nestral laver with the transverse section, It iz written as N.A,

In Art, 7.4, we have seen that if a sechion of a beam 15 subjected to pure sagging moment,
thien the streases will be comprezsive at any point above the newtral axiz and tensile below the

neutril axis, There is no stress at the neutral axis. The stress st o
digtanee v from the neutral axis is given by equation (7.1} as
o= :’; " ¥
Fig. 7.4 shows the cross-section of u beam. Let N.A. be the
neutral nxis of the section. Consider a small lnver at a distance s
from the neutreal nxs, Let dA = Area of the lnyver,

Now the foree an the layer
u Stress on lnver x Area of lnyer

i ||r.'1|




=5 ®y xald

Total foree on the beam section is obtained by integrating the above equation
2 Total foree on the beam section

=I; % v % dA

= H.["' x dA (s Eand R is constant)

But for pure bending, there i= no force on the section of the besm (or force is zero),

-
]

r

j_‘l' kdd =0

J_r x i = () |I:'|'= -;:,4.'ur'|nul. he h'l'ni

MNow v x dA represents the moment of area @A about neutral axis, Hepee | v x dA repre-
sents the moment of entire area of the section about neutral s, But we know that moment of
any area about an axis passing through (13 controid, is also equal to zero. Henee neulral axis
coincides with the centroidal axis. Thus the eentroidal nxis of n section gives the position of
niutral axis,

Due to pure bending, the layers above the N A. are sub-

jected to compressive stresses whereas the layers below the NoA. are subjected to tensile stresses.
Dhie to these stresses, the foroes will be aeting on the lavers, These forces will have moiment
about the N.A, The total moment of these foroes about the NLA. for a section 15 known as moment
of resistance of that section
The foree on ||I-.'|||_'.'|:'|‘ nt i |'|.|:=r.'||'|:'|'_'.' from neutrsl nxisin [":;:. T EYVETH |'|-I'.' et Wi (1), B
E
Farce on layer == xyxdd
i K
Moment of this foree aboul N.A.
= Force on layer x y

= XWX dA » h

i3

~ 3 v x dA
R

Total moment of the forees on the section of the beam lor momaent of resistanee |

E Er s
j — o ¥ % dd J ¥© s A
§ i
Let M = External moment applied on the beam section, For equilibrium the moment of
resistance offered by the section should be equal to the external bending moment.
¥

Er 4
M= et
M H-['T dA .

But the expression | v x oA represents the moment of inertin of the area of the section
nbout the neutral pxis, Let this moment of inertin be [,
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Hut from equation (7.21, we have
a E

¥y H
M o E

I v R
Equntion ( 7.4 iz known is bending equation
In equation (7.4), the different quantities are expressed in consistent unils ns given
iz v
M s expressed in N mm ;[ in mm
o s expredasd in Nimm® § ¥ inomm

and  E s expressed in N'mm® ;R in mm

ing. Equation (7.4)is applicable to a member which 1s

subjected to g constant bending moment and the member is abhsolutely ree from shear foree, But
i actual practice, i member is subjected 1o such loading that the B.M. varies from section to
gection and also the shear foree i3 not zero, But shear foree {8 gero at a section where bending
morment is maximum. Hedee the condirion of simple bending may be nssumid to be satisfied
such a section. Hence the stresses produced due to maximum bending moment, are obtained
from equation | 7.4 a8 the shear forees at these sections are generally zer, Henee the theory and
equations discussed in the above articles are quite sufficient and give results which enables the
engineers (o design beams and structures and ealeulnte their stresses and strains with a reasonable

diegree of approximation where B.M. iz maximum,

BENDING STRESSES IN SYMMETRICAL SECTION

The neutral axis (N AL of o svmmetrical section (such as arcular, rectangular or square )
lies at a distance of o2 from the outermost Iayer of the section where o is the diameter (for a
circular HI'I"III.brI.--::II."II'li'I'JII'I (for a rectangularor a square section ), There is no stress at the niitral
axis, But the stress at o point is directly proportional Lo its distanee from the neutral axis, The
maximum stress takes place at the outermost laver. For o stmply supported beam, there is a
eompreasive streas above the neutrenl axis and a tensile stresa below it [Twe plot these stresses,
we will get a figure ns shown in Fig. 7.5

Strass distribution
IPCrOnS 0 SOCN




I i A wteel plate of wedth 120 mm and of thickness 20 mm is bent inko o
vircudar are of radies 10 m. Determine the maximum stress indueed and the bending momient
wihtieh il prodiece the maximum siress, Take E = 2 x 10° Nlmm®

| Given
Width of plate, b= 120 mm
Thicknesa of plate = 20 mim

i .-.1.; 1
-ﬁ "U_ =8 = 10" mm*
12

Radius of curvature Rel0me=10x 10° mm

Moment of inertin,

Young's modulus, E =2 x 10° Nimm?
Lt = Maximum stress induced, and
M = Bending mement.
a_&
¥ R
E

= J.f Xy

Equation (1) gives the stress nt a distance v from SGA

Ulsing equation (7.2),

Streas will be maximum, when v i2 maximum. But v will be maximum at the top layer or
battom layer
¢t

¥ om 3 2 1{§ mm
:"'-I'l'l'-'l'ql.l:lllllll |'l1.'-'I1|I'l.“l‘-'l'l'|1.r'rl.l-:-
E
o = '” ¥
2 x 10*
T 0= 10°

From equation (7.4), we have

% 10 = 200 N/'mm?,

2x 10"
%= » ®ox 104

10 = 10°
= 16 x 10" N mm = 1.8 kNm.

Caleulate the maximum stress® induced 1n a cosd iron pipe of external
diameter 40 mm, of internal diameter 20 mm and of length 4 metre when the pipe is supported
af ifs ends and carries a point load of 80 N at its centre
Laiven !

External din,, D = 40 mm

Internal din., il = 20 mm

Length, L.=4m=4x 1000 = 4000 mm

Paoint load, W=80N

In cose of simply supported beam carrving a point lond at the centre, the maximum
bending moment iz at the centre of the begm,
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Wl

1

B 4000 .
Muoximum B.M == : == =8 2 L0 SNmm

M=8x 104 Nmm

Fig. 7.8 (b showg the cross-section of the pipe.

And maximum B.M

Moment of inertin of hollow pipe,
{ 5 [ -t
= N -_— .
i
rl: : 1 .
— 401" = 20" w — [2560000 = 160000]
64 ]
= | 17808.7 mm*
Now using equation (7.4),
M no
I ¥
when v i8 misimuim, stress will be maximum. But ¥ 18 maximum at the top layer from the N.A

D 40

" P T
Yot ® 5 3 = 20 mm

-

il

I'fqu.*mn-r'. (1) can e writien as

M Oma

I y

M
i - " 'll.". s

!

Bx10* x20
= —————— = 13,58 N/mm?, A
1178007 - 1858 Nimm

SECTION MODULL'S

Section modulus 18 defined as the ratio of moment of inertin of & section nbout the neutral
axi# to the distance of the outermost laver from the neateal axis, It i denoted by the symbol 2,
Henee mathematically section modulus is given by,

1
f: - o
b PadL

where { = M.O.L about neuteal axis
and ¥imuee = [Mistanee of the oulermiost Iayer from the neutral axis,

From equation (7.4}, we have

M _o

1y
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The stress a will be maximum, when ¥ 8 maximum. Henee above eguation can be
written os

I
Hu =d

-

M=a_ &
In the above equation, M is the maximum bending moment (or moment of resistane
ulfeered by the seetion ), Henee moment of resistanes offered thi seetion is maximium when seetion

modulus £ i maximum. Henee section modulus represent the strength of the acetion,
SECTION MODULLUS FOR VARIOUS SHAPES OR BEAM SECTION

1. Rectangular Section W b
Muoment of inertin of a rectangular section aboul an axis
through its C.G. (or through N.AL) s given by,
bd"
12
Distance of outermost lnyer from NA. is given by

gy Wy
is

Section modulus s given by,

b’ bd' 2 hd?
1_,_"rf'| 12 d B
2x(5 ]

2. Hollow Heclangular Section
B bd*
Here I'= l';! . iL!

- BIF = hd
12 3
D
'--I|= 2

!

§

A
¥

| | -
IzIIh’ir - bl " |

I
f

3. Cirewlor Secfion
For a circular section,




4 .‘Fu”.ll;.' r.,'r| r||'r,'l ."|-|-'I'r|II.'|'

[
I

Here | =

agp 0 -4
A cantilever of length 2 metre fails when a lood of 2 kN is applied ol the free
end, If the section of the beam i 40 mim % 60 mm, find the stress ol the foilure
Giiven ;
Length, L=2m=2x% 10¥ mm
Lond, We2kN=2000N
Seetion of beam 8 40 mm « G0 mm
Width of beam, ir = 40 mm
D pth of beam, i = 60 mm

kN
= 0 P =

Fag. V.10 a ) shows the section of the beam.
Section modulus of n rectangular section 1 given by equation i7.7)
bd® 40 x 60°
[+ B
Maximum bending moment for & cantilever shown in Fig. 7. 10 is at the fixed end
M=WxlL=2000x2= 1{"=4 x 10" Nmm

Last a,_ = Stress at the failure

Z= = 24000 mm*

U'sing eguntion (7.6, we gel
M=o . o
M : 4:-:1“?'

- T :
7 mooo 166.67 N'mm®,
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A rectangular beam 200 mm deep and 300 mim twide s simply supporied
over a span of 8 m. What uniformly distribuied load per metre the beam may carry, if th
bending stregs is not o exeeed 120 Nimm?,

e & T RGN
L Given
r-

Depth of besm, o = M mm
Width of beam, b = 300 mm
Length of beam L=8m
Mnx, bending stress,
a_ = 120 Nfmm®
Let w = Unifwrmly distributed load per
metre length over the benm Wi mm
{Fig. 7.11 la) shows the section of the beam. )
aecbion modialug for & rectangulor section 18 fven by equa-
ton 17.7)
hd® 300 = 200° .
— SOGUO0 mim
fi it
. B.M, for o simply supported benm earrving uniformly distributed losd as shown in
Fig. 7.11 is at the centre of the beam. 1t is given by

wxl:  wx®
= - =
= Byt Mm o= 8o D000 Nenm
= B0Ohe Nmm o I me= 1000 momd
Now using squation (7.6), we got

'” " d:":l: 'z

M

BOO: = 120 x 2000000
120 = 2000000

z 30 = 1000 Nim = 30 kMN/m.
2000 1 i} ke Nfm

W ol o R o o R R e A R R R e o ol o R e o R R o
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COMBINED DIRECT AND BENDING STRESSES

[hrect strees alone is produced in a body when it i3 subjected o an axial tensile or
compressive load, And bending stress is produced in the body, when it is subjected to a bending
moment. But if a body 18 subjected to axial loads and aléo bending moments, then both the
gtresses (e, direet and bending stresses) will be produced in the body. In this chapter, we ghall
sludy the important cases of the members subjected to direct and bending stresses. Both these
stresses act normal to a cross-section, henoe the two stresses may be algebraically added into &

single resultant stress,

COLUNIN

Caolumn or strid is defined ns & member of a structure, which is subjected to axial compressive
load. I the member of the structure is vertical and both of its ends are lixed rigidly while subjected
to mxial compressive load, the member 1s known as colimn, for example & vertical pillar between
the roof and fMoor, I the member of the structure is not vertical and one or bath of its ends are
hinged or pin joined, the bar is known as strut. Examples of struts are : connecting rods, piston
rods ete,

COMBINED DIRECT AND BENDING STRESS

Consider the case of a eolumn® subjected by a compressive load P
acting nlong the axis of the column a2 ghown in Fig. 9.1, This load will
eause i direct comprossive siress whose intensity will be uniform across the
eroag-scetion of the column.

Lt a, = Infensity of the stress

A = Area of crozs-geclion
P = Lood neting on the column
Then atresa,

I

shown in Fig, 9.2 (). Here %’ is known s ecoentricity of the load. The eccentric lond shown in

Now congider the cose of n column subpected by a compressive lond
whaose line of action 15 ot o distanes of ‘¢ from the axis of the column s

Fig. 9.2 (o) will eause direct stress and bending stress. This s proved as discussed below ;

1. Im Fug, 9.2 (6), we have apphed, along the axis of the column, two equal and opposite
forces P. Thus three forces are acting now on the column. One of the forces = shown in Fig
9.2 ic) and the other two lorces are shown in Fig, 9.2 (d)

2, The foree shown in Fig, 8.2 (¢) is acting along the axis of the column and hence this
foree will produce a direct stress,

3. The forces shown in Fig. 9.2 () will form s couple, whose moment will be P x ¢, Thiz
couple will produce a bending stress.




Henee an eecentric® load will produce o direct stress a8 well g a bending stresz, By
adding these two gtresses algebriocally, a single rescltant stress can be obtained.

o |P w F | P

- e

A column of rectangular section subjected to an eccentric load is shown in Fig, 9.5, Let the
load & eceentric with respect o the axis Y=Y as shown i Fig 8.3 (8), It 15 mentioned in Art, 8.2
that an eccentric loAd causes direct stress as well as bending stress, Let us ealculate these
HLICHRSCE,
Last P = Eccentrie load on eolumn
i Eccentricity of the load
f, = Direct stress
! Bending stress
b Width of column
d = Depthof eolumn
Area of eolumn section, A = b x o
Now moment due to eccentric load P is given by,
M = Load % eccentricity
= "%
The direct stress (a ) is given by,
loadi P P

a. =
] Area A
This siress is uniform along the crozs-section of the column,
The bending stress o, due to moment 4t any point of the column section at i distance ¥
from the neutral axis ¥-Y s given by
M a
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where | = Moment of inertin of the column section about

d.b
the neatral axis ¥-)Y = ‘I
12

Substituting the value of | in equation (i), we get

d. b o d.5
12

The bending stress depends upon the value of v from

the nxis Y=Y,

=

&

..LI

The bending stress at the extreme is obtained by

substiiutling v = 5 in the above squation

12M b 6 M
0, = X

(e I et R

Ama=hxd=Al
Th resultant stress ot any point will be the algebraie

sum of direct streas and bending stress
If v i= taken positive on the eame side of Y-Y as the
lond. then bending stress will be of the same type na the
direet atreds. Here direct stross 18 compressive and henoe

bending streas will also be compressive towards the right of

Elevabaon

the axis Y-¥. Similarly bending streas will be tensile towards the lelt of the axiz ¥-Y, Taking

compressive slress as positive and tensile siress as negative we éan Nind the maximum and

minimum stress it the extremitics of the section, The stress will be moximum along layer BC

and minimum nlong laver AD,

Lot o = Maximum stress (i.e., stress along BC
a_ = Minimum striss (Le,, siress nlong AL
Thena_ = Direct siress + Bending stress
= ).+ 0] i

P B .f‘..:-

}_l |
umiid i = Diirect stress — Bending stress

Here banding siress s +vel
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These stresses are shown in Fig. 9.9 (c), The resultant etress along the width of the
column will vary by o strmight line lnw
fin equation (9.2), o is negative then the stress along the layer AD will be tensile, IF
a_ i zero thién there wil be no tensile stress along the width of the column. ITa__ is positive
then there will be only compressive stress along the widih of the column.

! A reclangilar column of widih 200 mm
and of thickness 150 mmt carries a poial load of 240 kN af an
eccendrictty of 10 mm as shown in Fig, 5.4 (0. Defermine the
mazimum and minimgm sresses on e section

L. Criven
Width ) M) mrm
Thickmness, = 150 mm
Arpa, . o
20K x 150 = 30000 mme®
Faventne lomd,
240 kN
2R0000 N
Eecontricity,
10 mm
Lt Muximum stress, and

i Minimum stress

i) Uit equatiom (9. 1), we get

P 14 Bxe |

AU T

'.f-l-ﬂl"lllll i

UMY 200

Bi1+0.3) = 104 Nim?,
(i) Using equation (9.2, we get

P

A

6x10)

'.!-It'll.HJ'l.ll i G 10

| = Bi1 = 0.3} = 5.8 Nmm?,
0000 200 s

These stresses am shown in Fig, 9.4 (i)




P
L)
|
¥
)
[}
]
L]
]
L]
L)
)
]
L)
]
)
]
)
L)
]
L]
]
L)
r
1)
)
[}
]
]
1
)
]
]
1]
L)
L)
]
L)
)
]
L]
L)
]
]
]
]
L)
[}
]
)
L)
¥
]
L)
)
1]
L]
[}
L]
[
i
]
L]
]
]
]
)
L)
r
]
L)
[
]
L)
L)
]
]
L)
]
)
)
]
)
]
]
]
]
]
]
[l
)
L)
]
]
L)
)
)
)
L)
]
L]
L)
!
¥
L]
[}
L]
[]
¥
]
]
|
]
]
]
L]
L]
]
L)
i
]
)
]
]
)
L]
]
)
]
]
)
]
¥
]
L]
]
".-.-

A column of rectangulnr seetion ANCL, aubjected to a lond which s eceentrie to both o
i# ahown in Fig. .11
Lt P = Eecentrie load on column
¢, = Eecentricity of lond about X-X nxis
¢ = Eccentricity of lond about ¥-¥ axis
] Width ol column i &F
Depth of column

Lo prisrd

Direct stress

Bending stress due (o ecoentnicity ¢,
Bending stress due Lo eccentrivily e,
Moment of load about X-X axis

P ¢,

Moment of load about Y-Y axia

Pxe

Moment of inertin about X-X nxis

ha™
" 12
Moment of inoriia aboul ¥-Y nxis
dh
12
Now Lhe ecoentric load is equivalenl toa eefitral load P, togethier with a bending momend
Pei_abon ¥-¥ and a bending moment P x e about X-X

=

i} The direct stress (o) 18 given by
P
S A

'] .l.hn;' |_||,'I||’|_||||_|" &LFiAs |1'.,||_l Lo pECEnLFMaLY & 18 ven ||:|

Pxe, xx

h h
In the above equation x vanes from 5 i = -

s &L

1if) The bending stress due to eccentricity ¢ 8 given by
M v Pxe, xy
I I

i i
In the nbove equation, ¥ varies from o o+ o

Iher resnltint stress st any poant on the section

T ol n)

M, xx M, .y
I, Iy
i AL the podnt C, the co-ordinates ¥ and v are positive hence the resultant stress will be
ST
i AL he |m|||:_'|._r|'||' co-ardirubes F and v are nerative ind himee Ehe resoltant stress will
ber mirimum

(i} AL the point B, x is +ve aned v is ~ve and hrnee resultant stress

LN,




P M .x M

TA s

iir) At the point [, v is =ve and v 18 +ve and hence resultant stress

W¥ KT

FAILURE OF A COLUMN

The failure of a column takes place due to anyone of the following stresses set up in the
columns
() Direct compressive stresses,
(i) Buckling stresses, and
(iii) Combined direct compressive and buckling stresses.

Short Column. A short column of uniform cross-sectional area A,
subjected to an .lt|.1| compressive load P, s shown in Fig. 19.1. The compressive stress induced is
given by P

II
p=
A

If the compressive load on the short column 18 gradually increased, a

stage will reach when the column will be on the peint of failure by crushing.
The stress induced in the column corresponding to this load is known as crush-
ing stress and the load 15 called crushing load.
Let P = Crushing load,
a_=Crushing stress, and
A = Areq ol eross-section,

.
The: -
e 1 L

All short columns fuil due to erushing,

Along column of uniform cross-sectional area A and of
length/, subjected to an axial compressive load P, is shown in Fig. 19.2. Acolumn is known as long
eolumn ifthe length of the eolumn incomparison toits lateral dimensions, is very large. Such columns
donot fail by erushing alone, but also by bending (also known buckling) as shown in Fig. 19.2. The




lose at which lhrd'lllll!llri_uh! buckles, s known as buekling lomd nrr'J'r!r:'uI'_,IIu-.‘
ar erippling load. The buckling load is less than the crushing load for a long col-
umn, Actually the valueof buckling load for long columns is low whereas for zhort
eolumns the value ol buekling load 1-r'r'|:|1'i'.|']ll. |'||;:h.
Hefer to Fig, 19.2
Lart [ = Length of a long column
P = Load (eompressgive) at which the column hag just buckled
A = Cross-sectional area of the solumn

¢ = Maximom beniding of the column at the centre

a1, = Stress due to direct load = —

Pxe
a, = Stress due to bending at the centre of the column = 7
/
where Z = Section modulies about the axis of bending.
The extreme stredses on the mid-seetion are given by
Maoximum stress =0, + 0,

and  Minimum siress =g -a,.

The column will fail when maximum stress (e, o, + 6, )18 more than the crushing siress
.. But in case of long columns, the direct compressive stresses arg negligible ns compared to

buckling stresses, Hence very long columns are subjeeted to buekling stresses only.
ASSUMPTIONS OF EULER'S COLUMN THEORY

The following assumptions are made in the Euler's column theory
1. The column = initially perfectly straight and the load & apphed axially,
2. The cross-gection of the column is uniform throughout its length.
4. The column material is perfectly elastic, homogeneous and isotropic and obeys Hooke's
law.
. The length of the column is very large as compared to its lateral dimensions
fi. The direct stress is very small as compared to the bending stress
6. The column will fail by buckling alone

7. The self-weight of eolumn i negligible

END CONDITION FOR LONG COLUMNS

In case of long columns, the siress due to direet lood 18 very small in comparison with L
atress due to buckling. Hence the fatlure of long columns tnke place entirely due Lo buckling (or
bending), The (ol lowing four types of end conditions of the eolumns are important ;

1, Buth the ends of the column are hinged (or pinned

2. U enad 15 fixed s the other end 6 free

3. Both the ends of the column are fixed,

4. One ond i fixed and the other is pinned

For a hinged end, the deflection id gera. For o fixed end the deflection and slope are 2ero
For o freo end thi deflection is not zerm,




1AL Sign Comventions The following sign oon

" B
ventions for the bending of the columns will be used

i
1. A momoent which will bend the eolumn with its W‘a
corivatly townnda s indtial central hine as shoswn in Fae 1903 (i g | -
& taken ns positive. In Fig. 18.3(a ), AR represents the initial 7
contre lino of a column. Whether the column bonds taking the
shape AR or AB”, the moment producing this type of
CUrvIan & posative
2. A moment which will tend to bend the eolumn with /
i eomeaeity towarda ita initinl centre line as shown in o 4

Fig. 19.3 b} is inken as negative "r ""::” rr

ih) Mepatoy

The load at which the eolumn just buckles (or bends ) s enlled erippling
bond. Consider s oelumn AN of length [ and unifonm eross-sections] ares, hinged
af both of itd ends A and 8B, Let P be the crippling load at which the column has
Just buckled. Due to the erippling load, the column will deflect into a curved
form ACH a4 ghown in Fig. 19,4

Consider nny section at 6 distanee & from tho end A.

Lt v = Deflection (laternl displacement | at the section

The mament due to the erippling load ot the section = -, ¥

= Wy gD 12 1A | T ] r| v e SEEm comvenblon
given i Art. 185.4.1

But moment = Ef 9y .

dr”
Equating the two moments, we have
[T

il =z - f", ¥ or .F,-I r’-'ll

fris dx?
d*y g s
de* Bl
The solution® of the above differeotinl equation s
. P [F
. + |
|" V&I ) VEI |

where €, and ©, are the constants of integration, The values of C, und ©©, are as follows

# f',_\':l'l

=il

¥m [ . cos C, . sin : X

Ut At A, x = Dand y e (3ee Fig 18.4)
Subsatituting these values in equithon U ), we get
Om s, . co8ls !'I_ fin
o O]+ O nl I= com 0w 1 nd ain 0w 0)
- t'l
oAl
it AL B, x = { and ¥ = 0 {See Fig. 19.4)
Substituting these values in equation (), we get
[p [P
0= "'."I:'II"'Ii".'[ # ..-uill..'l"liﬁj
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(1 1P|
= + O . sin |" ' \' Er | I € = 0 from equuiion i}
a I,

4 Bl !;\..E'J'

From equation i1, it is elenr that elther C. =0

g
gin |1 ]2 |«
{"VEr)
Ad C, = 0, then il €, is also équal to gero, then from equatian (i) we will get v = 0. This
reans that the bending of the column will be zemar the column will not bend at all. Which is neot
Lruae,

b |
-||1,|'.|lm [=C

= qin 0 or sin § or &n 28 or gn 4 or

]

I
"NEI
Taking the least practical value,
B
e =
NEr

= 0 ar nor Ixor dx or ..

Consider n eolumn AR, of length [ and uniform croas-sectional aren, fxed ol the end A and
free at the end 8, The free end will sway sidewnys when load 15 applied at feeeend and curvaiure
inthe length | will be similar to that of upper half of the column whose both ends nre hinged. Lot
Piathe erippling load ni which the column has juat buckled. Doe tothe erippling load P, the column
will dofloct as shown in Fig. 19,5 in which AR is the original position of the column and AR, is the
deflected position due ta erippling load P

Consider any section at o distance x from the fixed end A

Lt v = Deflection (or laternl displacement i al the section
i = Deflection al the free end B,
Then moment ot the section due to the erippling load = Pio - v)
{+we gl 18 tkoon due Lo sign convention given in At 19.4.1)
d*y

But moment is alsa = Bl —5

dx
+ E-.luu.tlru; thie Lano marmenbs, we 2ol
P P.a-P
B W ==Yl 8-y
dr* g

d*
Bl = +P.y=P.a

[rhy
rf"x P .
de' Bl 7 EI

The solution® of the differential equation is

il

yu i, ﬁHi.‘L\:‘;‘l-f-:




where C, and C, are constant of integration. The values of C, and C, are oblained from bound-
ary conditions. The boundary conditions are :
i1} For a fixed end, the deflection as well as slope is zero.,
ay
Henoe at end A (which is fixed). the deflection v = 0 and also slope .r.|’.r =0.
Henceat A, x= O and y = 0
Substituting these values in equation (i), we get
D=0, .cosl+C,anl+a
:f'!x'li-f'_,a-.ut-ll s poell=1,8n0=0)
=C, +a

L.==a

{)
At A, x =0 and & =1
dx

Differentiating equation (7 ) w.r.L. x, we gel

dy P 1 [ P c | [P | P
3 E oE | X
“Nar ) VEr * U\ V& ) VE

e =7 .0 ]l¢i|||

o [T (e [Ef[E
“mreNE Ve ) T e V)

dy
ButatA,x=0and =— =0,
dx

= The above equation becomes as
o 7
— RN f]+|:'. — 0 (1]
*NEI

D==LC,
VY Er

[P | P
; Klmi, J—.
' VEI \EI tYEI
From the above equation it is clear that either C, = 0.
5
= U,
VE!

= % 0+L,

a
— cannot be equal to zero,

But for the erippling load P, the value of \

-t |.”LI = ([},

Substituting the values of C, = <o and C,, = 0 in equation (i), we get
= {1 . CiE 'I .4 -P-

|\ VEI'

But at the free end of the column, x=/andvea

+ .

Substituting these values in equation (i ), we get

I -P.
a=-=ga,.008 | [,
| "VEI |

+

f I i

F
OD=-a.cos|l.,/— | or acos| =0
|\ "YEI |

P
\"Ver |




But ‘a" ennnot be equal Lo zern

. [P R i
1'I"h| 1] Ciin O CiEs 2 0r ¢tm

[ LRy P
Y EL 2
¥z Ix &n

d { = Fi
| T

Taking the least proactical valuo,
P = (P =
| = ir | =
VEI 2 Vel ¥

= El

4

P=

Cansider a column AR of length | and uniform eross-sectional area fixed at both of its ends
A ond B as shown in Fig. 186, Let P i the crippling load at which the column has buckled

Due ta the crippling load P, the column will deflect ns shown in Fig. 19.6. Due p
Lo fixed ends, there will be fixed end moments (say M ) at the ends A and B, e
Thae fixed end moments will be aceting in such direction so that slope ot the i_“" T
T ends bescinmmies 2or ".-
Consider o section at o distance r from the end A, Lot the deflection of :
the eolumn at the section 18 v, As both the ends of the column are xed and
the eolumn earries a crippling load, thers will be some fixed ond moments o
A nnd 8.
Let M = Fixed end moments at A and B.

Then moment ot the section = M, - Py ¥ |
e
’ i 'I.'u |
But moment ot the section e alao = Ef =5
o

2 Equating the two moments, wo got Lial ®w
: -rl|- ,-_i.-.-lp.-.--.

Fy

JI‘I
2 aM,-Py b
dx®
d*
Bl =5 + P.y=M,
dx
i, P M,
at T BT R
My, P P M,
BT P OECF
The solution® of the above differential sguation is
., [. [P] N
"'=‘I|'“"‘|L"i:'_l-:-§f"r; ~.|1||!'1I-EE |+ f:l if
whera i ': e '_. are constant of integration and their values are obtained from boundary conditions
Boundary conditions mre ;

o
WAMA =0 v= 0 and also S =0 ag A 15 8 [oed end.
ilx

W ALB. x=/v ll:|r||1.|!.-4|‘:'1_ 0 oz B iz alao s fxed end
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Substituting the value x = 0 and ¥ = 0 in equation (i), we get

M
l]"f'ln-c] ff‘__#':'ll 0 v o mal=l)

. M,
:E.' P

M,
o.M

I P
Differentiating equation (i), with respect to x, we get
C 1) &in | X P ] C, o Ir < L
: gin *YEr|'vYer*? -"”h!"EF.'.f"IlHI

C. ol b (P [P e 'x P [P
A & + b .
R bl T R B b b 3 8

dy
) + 1)

dx

dy
Substituting the value x = 0 and .I'. = [, the above equation becomes
ax

5
0==C,x04+Cyx1x v+ &in 0= 0and cos 0 = 1)

II:I-
= |
“VEI
—
From the above equation, it is clear that either C, = O or \El 0, But for a given enippling

)
ad P, the value of i i cannot be equal to zero,
VEI
l"..‘ﬂ'.

: . M, . - - -

Now substituting the values of ;= P and € , = 0in equation (i}, we got
M, | P o M,
- M — | )+
P ““\*YE | P
M, ( [F) M,
P \"\El )P

Al the end B of the column, x = [ and v = 0

Substituting these values in equation (i), we get
M, ([ [F\ M,

0= = oos |

P NE TP

=] =cos ), oo 2 cos 4%, oos BE ...




P (), 2x, 4=, 6x
VEI
Taking the least practieal value,

I .: Ir T

{ 'H-']' .

e ey T .n_n-_-n. e
|.a i .|,,.1-|-|:1-.._.|. E
a-.u.-'amu'-hql.-,:l-.- J.h- J..n.\. #[.l ada :‘rhl‘\::fl“

TXED A l| ] CENTD LE it
s SE L T —.—f—-—-—rﬂ':..-—r—L-.ﬂlz'-“\-r-nl-.".‘-"' ——-n_-.:n,.:.;—

Consdoer a column A8 of length | and uniform cross-aectionnl aroa
fixed ot the end A and hinged at the end B as shown in Fig. 19.7. Let P s
the erippling load at which the ealumn haz buckled. Due (o the erippling
load P, the column will deflect a= ghown in Fig. 19,7

Thiere will be fixed end moment (M) at the Ased end A. This will try
o bring back the slopo of deflected column zore at A, Henee 18 will be ncting
anticlockwise nt A, The ixed end moment M 6t A is 1o be balaneed. Thia
will be balanced by o horizontal reaction () at the top end B as shown in
Fig. 18,7

Conglder a pection ot o distance x from the end A

Let v = Deflection of the column at the section,

M_ = Fized end momont ol A, and

H = Horizontal reaction ot B. ! ",,E_: L.
The moment at the section = Moment due to erippling load at B S - i
+ Moament due to horizontnl resction at P

==F. v+ H.l=x)

But the moment ot the section is alo

Equating the two moments, we gl

l.ll'.'lr
El—gs=P.y« Ul =%)
ifx*

d*y
El =5 «P . vaHil-x)
-

i
d'y P H
de Bl YT E
H P P Hil-x)

f =x)n

El P El P

(Dhvading by £4) .44

The splution® of the above differeniin quation is

P - L P "
# & | s == =X Il
\H \"VEl] P
I.t.h-ﬁ-i'l and '_. e consdsants of integration and their values are obiained from boundiry conditions
Boundary conditions are

L\..ﬂ- X
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i dy
(i) At the fixed end A, x = 0, v = 0 and alzso — =10
X
(i) At the hinged end B, x = | and y = 0.
Substituting the valoe x = 0 and ¥ = 0 1n equation (i), we get

H.1

“_{.I:l-lf-.A“-l j’

oo H
= F‘ [

Differentiating the equation (i ) w.r.L. x, we gel

If =)= [': .

,J

J:lll.‘. A f . P 'j, e f '}l:. \ '!r
d_l = I- ?‘-l]ll.l.kH; |I.I,|:f * ILT“"..I.'HEI?.\;-IT
[P) [P o wals [PY [P H
‘YEI ) VBT T2\ YET ) YR T P

=={ 8in|x

At A, x =0 and 1? = ()

(S g

1 lli-i[.l 1 .\lf} —:‘{ g5 ;-||:|I!_H.._'n;-ﬂ_]|
L. sy ) -
FYET g 4 R p g
. — o H . H |El
Substituting the values of C, = 'P 4 and ( g = P‘ \ P
H ( [P\ H[ET .[ [P) H

promiEyer|+ By =mSyE|tp Y

D==0C
in equation (i), we get

Attheend B,x =/ and ¥ = 0.
Henee the above equation becomes as
H.  ([F\ H[EF .{ [F) H
= || Wil - B | - _ll
0 p ik '.]I1|j-_‘f| P\J Illlr'qfr_‘f_! FI
( [F\ H [B
'P' [ cog | lr‘i I | 4 P ]II P
H [El ([ Ip) H f P

[ s | ]

PP I NE " P (e

£In + {

-
I |
\EI)

{ TPy W P F3 { '
.--'ml.ll'F ¥ i .ood | :

\"YEI | P H VEI NEr |
[F (. [F)
“UNE | )

rI, y ”j-]"

an | =]
I:||||.|',|.lH | ‘\EI

Jl

The solution to the above equation is, [ . |— = 4.5 radians
VEI
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Squaring both sides, we got
F
i LA H-Ir w 5% = 20.25
I'
P=2025—
But approximately 20,25 = 257
an" Kl
"

The eflective lengih ol o given codumn with given end conditions i the length of an eguivalent
eolumn of the samo material and cross-gection with hinged ends, and having the value of the
erippling load equal to that of the given column. Effective length 1 also called equivalent length

Let 1., = Effective length of a eolumn,

{ = Actual length of the column, and

Ps

P = Crippling load for the eolumn

Thien the erippling load for any type of end condition is given by

|
Thie erippling load (P in terms of actual length and effective length and also the relation
be{ween elfective length and actual length are given in Table 18,1

TARLE 1B
‘ENa t.:rmm muum—q Relation betioern
B | e

Both enda hinged

2. | Onoend is fxod
nnd siher is free

L

I 4Kl
Both ends fixed T

U end fived amd %E{

other is hinged

There are two values of moment of inertin Lo, [ and [

The valoe of [ (momont of inertia) in the above expressions showld be taken as the leas
viilue of the twe momenta of inertia a5 the column will tend to bend in the dircetion of least
momént of inertia.

L T e




The moment of inertia () ean be expressed in terms of radius of gyration (k) as
F=Ak"  whereA = Area of cross-section
As [ s the lenst value of moment of inertin, then
& = Least radiuz of gyration of the column section

Now erippling load P in terms of effeetive length ia given by
='El  x'Ex Ak
LS L*

rl .

FExA #'ExA
,..-I.l: | LI L&
k* | & r

And the stress corresponding to erippling load i given by
Crippling load P

' Arci 8
rEXA

- (mubstituting the value of P

(L Y
Al-E
(%)

Crnippling stress

'k

5 !". i
()

! | The ratio of the actunl length of o column to the least radius
of pyration of the eolumn, i known as slenderness ratio
Maothematieally, slenderneas Ftio is given by
. Actunl length
:"'Il'|'|l:1|.'_l'|'|ln--' TTitic = T S -
Lasaist padius of gyration
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TORSION

A shaft is said to be in torsion, when equal and opposite torques are applied at the two
enids of the shaft, The torque is equal to the product of the force applied (tangentially to the
endz of a haft) and radivs of the shaft. Due to the application of the torques at the two ends,
the shaft is subjected to a twisting moment, This couses the shear stresses and shear strins
in the material of the ghaft.

DERIVATION OF SHEAR STRESS PRODUCED IN A CIRCULAR
SHAFT DUE TO TORSION

When a circular shaft i2 subjected 1o torsion, shear stregses are set up in the material of
the ghaft. To determine the magnitude of shear stresz ol any point on the ghail, conzider o
shnft fixed ot one end AA and free at the end BB ns shown in Fig. 16.1. Let CD i8 any line on
the outer surface of the shaft. Now et the shaft 18 subjected to a torgue § ot the end 88 ns
shown in Fig. 16.2. As a result of thiz torque T, the shaifl at the end BE will rotate clockwize
and every cross-section of the shaft will be subjected to shear stresses. The poiat 2 will shift w
¥ and henee line C5 will be deflected to CIF az shown in Fig. 16.2 ta ), The line GFF will be
shifted to OIF as shown in Fig. 16.2 (h),

A

|
i
1
A

R = Radius of shaft

L = Length of shaft

T = Torque applied at the end BB

t = Shear stress induced at the surface of the shaft due to torque T
' = Modulus of rgdity of the materinl of the shall

& = £DCD" also equal to shear straim
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B = DO and is also called angle of twist,

-~

Now distortion at the outer surface due to torgque 1
= DIY
Shear steain at outer surfnee
= Distortion pier urit length
Diistortion at the outer surface DI

]A‘nr.:lhul'i.-hﬁ_- L

by
n ° tan é
=6
. Shear steain at outer surfice,
Doy
L

(1f & 18 very small then tan & = §)

&
Now from Fig, 16,2 (b)
Are DIY = Of) = 6= Ro
Substituting the value of DIY in equation (i), we

00 = B = Radius of shaft)

Shear strain ot outer surface
Rx#
L
Now the modulus of rigidity (C) of the material of the shaft is given as
Bhear stress induced  Shear stress at the outer surface

Cs — —

Shear strain produced Shear strain at outer surface

o i From equation (1), shear strain
f RFJ | !
VL]
tx L




ReCx=d
. i
MNow for o gven shalt subjected to n given torgue (7, the voalues of €, 8 ond £ are
conatant, Henee shear siress produced s proportional to the radius §

t=8R or ;i' = fonstant

If i i# the shoar stress induced ot a radius o from the contre of the shalt then

.. fi 16,1
— = i | i
i L M afuation (1,

Tt 9 g
R L r
From equation (61, it is clear that hear ¢tress at any point in the shaft is proportional
ta the distance of the point from the axis of the shaft. Hence the shear stress is maximum at
the outer surface and shear stress is 2em at the axis of the shaft
i i I The derivation of shear stress produced in a circular
dhaft subjected to torsion, is based on the following assumptions ;
1. The material of the shaft iz wniform throughout
2. The wwist along the shalt iz uniform
}, The shaft is of uniform circular section throughout
4. Crosg-sections of the shatt, which are plane before twist remain plam after twist
. All radii which are stroight before twist remain straight after twist

MAXIMUM TOROUE TRANSMITTED BY A SOLID CIRCULAR
SHAFT

The maximum torgue transmitted by n eircular salid shaft, 1= obtained from the maxi
mum shear stress induced at the outer surface of the solid shaft, Consider a shaft subjected to
a torque T as shown in Fig. 164

Let 1= Maximum shear stress induced ot the suter surface

R = Radiuz of the shaft
i = Shear stress at a radios 7 from the centre,

Consider an elementary circular ring of thickness ‘dr at o distance '’ from the centre as
shown in Fig. 16.3. Then the area of the ring,

dA = 2xerdr

From equation (16,2), we have

1 4
[
Shear stress at the radius r,
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A Turning foree on the elementary circular ring
= mhenr stress acting on the ring = Area of nng
=4 % dA
r

in x 2nrr

I

T :
x Inr-dr
K
Now turning moment due to the turming force on the elementary ring,
dT = Turning foree on the ring ® Digtance of the ring from the axis
T

= — ¥ Ferilr x F

T
= % Bnrdr

R
The total turning moment (or total torque) s obtained by integrating the nbove
cquation between the limits 0 and B

I’ f i
' J'dr-]' x 2nrdr
- I3

i1, A solid shafl of 150 mm diameter is peed o fransmil forgue, Find the
sricximiam torgue trangmitted by the shafl if the maximum shear stréss indieed 1o the shafl ia
45 Nimm’
I. Given ;
[Mameter of the shait, £ = 150 mm
Maximum shear stress, 1= 45 Nimm*
Lt T'= Maximum torque tronsmitted by the shafl
Using equation (164), T = R 1P = - « 45 = 1607
16 16
= 29820586 N-mm = 20820688 N-m.
The shearing siress of a solid shaft g nod fo exceed 40 N mm® whin the
torque fransmitted is 20000 N-m. Determine the mintmpm diameter of the shaft
{Hiven
Maximum shear stregs, €= 40 N/mm®
Torgue transmbtted, T = 20000 N-m = 20000 = 10" N-mm
Lt I} = Minimum dinmeter of the shaft in mm
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Using equation (16.4),

-
i

| 1

7 Hi'”

p-[187)" _[16x20000x10°
3 x4l

3
|-IW£mm

MAXIMUM TORQUE TRANSMITTED BY A HOLLOW CIRCULAR
SHAFI

Torque transmitied by a hollow circular shaft iz obtained in the same way a8 for a aolid
shaft, Congider a hollow shaft, Lot it is subjocted to a torque T as shown in Fig. 164, Take an
elementary circular ring of thickness ‘dr’ at a distance r from the centre as shown in Fig, 16.4.

Let R, = Outer eadius of the shaft

K, = Inner radius of the shafl

r = Radiuz of elementary circular ring
dr = Thickness of the ring

t = Muximum shear stress indoced at outer

surfuce of the shaft

g = Shear stress induced on the elementary ring

dA = Area of the elementary circular ring
= 2nr = dr
Shenr stress at the elementary ring iz obtained from

equation (16.2) as

Here outer radius R = K,)

it

Turning foree on the ring = Stress < Aren = g = dA

rx 2rndr
1]

£
=I5 i r= dr

Turning moment (7T on the ring,
dT = Turning force = Distance of the ring from centre
= IR : e s re g ' rdr
"R ER e
The total turning mament (or total torgque T is obtained by integrating the above equa
tion between the limits K. and H,I

i R, i y i
'} =In dl -L_ .!njl;‘—lr dr
K;
= I k. Iﬂ r dr

‘R

{(*» tand K, nre constant and can be taken outside the integral)
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Laet [}, = Uuter dinmeter of the shaft

I = Inner dinmeter of the shaft,
by 1}
R = - and R = -

Then -
Substituting the volues of B, nnd R in equation (16.5),

() -(2) ' b']
2) \2)| = |18 16
D, 7 H [y,

| 2

FOWLER TRANSMITTED BY SHAFTS

Onee the expression for torgue (T for o zolid or a hollow shaft is obtnined, power trans

mitted by the shafts can be determined
Last & = r.pom, of the shaft
T = Mean torque transmitted in N-m

Angular spoed of shaft

4 AT @
Then Power 21;;{:

[{+]

wilis
- =N
T W 80
=T xw
i L In a hollme circufar shaft of outer ond inner diameters of 20 em and
10 em respectively, the shear giress is not to exceed 40 Nimm®, Fing the moaximum forgue
which the shaft can safely transmil
(fiven
Outer dinmeter, £ = 3 em

Inner dinmeter, [ = 10 cm = 100 mm
1= 40 N/mm*

= ) mm

Maximum shear streas,

Let T = Maximum torque transmitted by the shaft

Using equation (16.6),
.

= [l i
- % 40 2007 = 104

2000
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% [18x10° - 1x10°] .. .
- % 40 | - J ._..._F = HEMBED N-mm
16 204
= GROO4.B6 N-m.
Tewo shafts of the same malerial and of same lengihs are subpected fo the
[T P rl.I'JIIIJJ'_ .'I'r thie ,']r'-f l.l’IrI..'II I lelll il errr .'.-."ru' seclion and e sreond ».".'r|_.']' s i.ll,'. .r.'n'lulllll.'i
circular section, whose internnl diameter 8 200 of the outeide dimmeter and the maximim
whenr stress developed in cach shafl s the same, compare the weights of the shafts.
Lsiven ;
Two shafis of the same material and same lengths (one @8 2olid and other is hollow)
tran#mit the same Loy ibis and rIu-\.‘q-lnp-- thi marmie maximum sireis
Lant T = Torque transmittied by each shaft
t = Max. shear atress developed in ench ahaft
D = Chuter diameter of the salid shaft
b = Outer dinmpter of the hollow shaft
D = Inner dinmeter of the hollow shaf = ; ]
W = Weight of the solid shafl
W, = Weight of the hollow shaft
L = Length of each shafl
w = Weight density of the material of each shaft
Torque transmitted by the solid shaft is given by equation {(16.4)

R
T= T ¥
Torque tranamitted by the hallow shaft is given by equation (16.6),
(B'-n'] = [B)'-w@ap,)|
D, | 8| bp
16
1

Dy -2t |

. 1
65 I,
= = T'x e B
16 K1
As torque transmitted by solid and hollow shafts are equal, hence equating equatinns

calif)

LE) Jllll.t K by

K
t[F =
16

4
Cancelling .Ilj t from both sides
65

:="'J|i
D= ),

res 1" (657"
=l 2D | —| D,=0820D,
| &1 g1/

Now weight of solid shaft, W = Weight density = Volume of solid zhaft

D

= iir ¥ Area of cross-section x Length

i - Mo [,
"H.i'r L
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Weight of hollow shaft,
W, = w x Aren of cross-section of hollow shaft « Length

I n
=wx 3 D -Dfl xL=ox 7 I~ (23 D x L
R ne 40 4] E b _ .
= N 'i'i,”“ 'é‘.Hu !r.f.=u'1'=4’!.] “.."L

Dhviding equation (i) by equation (),
Ly, .
Wb et

Wo wx®x2p2xs 80
4 9
2 X I-":-"Eiif'f'l- v D= 0,929 [, from equation (1]
5 by .
C I
4 0.929¢ x 2o__
b b,
Weight of solid shaft  1.55
Weight of hollow shaft ~— 1

EXPRESSION FOR TOROQUE IN TERMS OF POLAR MOMENT (1
INERTIA

Polar moment of inertia of n plane area is defined ns the moment of inertia of the nrea
about an axi perpendicular to the plane of the figure and passing through the C.G. of the
area [t is denoted by aymbol of

The torque in terms of polar moment of inertia () s obtained from equation |16.3 (4]
of Art. 16.3

The moment (dT) on the circular ring s given by equation [168.3 (A)] as

t t

dT = — Igridr = R ruridr=— P x 2 dr

"

I dA v dd = 2nr dr see Fig, 16.3)

I rafdr= SridA = [ da
Total tergue, T= I [ J. —r'dA = J. [t 0
I 1] '] R H 1
But r* dA = Moment of inertia of the elementary ring about an axis perpendicu-
lnr io the plane of Fig. 16.3 and pazsing through the centre of the
circle,

R
J F* dA = Moment of inertia of the circle about an axia perpendicular to the
a

plane of the cirele and passing through the centre of the eirele

e
Palar moment of inertin (J) 3 mw




Hence equation (1) becomes as
T H xd
r =
S K
But from equation { 16, 1), we have
T 09
R L
e X
J R L
where (= Modulus of rigidity
il = Angle of twist in rmdiation
L = Length of the shafl

POLAR MODULUS

Polar modulus i deflined as the ratio of the polar moment of inertia to the radius of the
shaft. It is also ealled torsional section modulus. It is denoted by Z . Mathematically,
of
£ om
* R

{a} For u solid shaft, o = :

Z, =

(b1 For n hollow shaft, o

{Hoere B i8 the outer radiusi

( Dy
| R== |

-

45lDa' =D
- D, -D}

"
D2 "D,

STRENGTH OF SHAFT AND TORSIONAL RIGIDITY

The strengrth of a shaft means the maximum forgee or meamem poieer the shafll can
transmit
Torstonal Higidity or stiffness of the ahatt is defined as the product of modulus of dgidity
() nnd polar moment of inertin of the shaft /). Hence mathematically, the torsional rigidity
I8 EIVPD AS,
Torsional rigidity = £ % Jf,
Torsional rigidity 15 also defined as the torgque required to produce o twist of one mdian

per wnit length of the shalt




Let o twisting moment T produces a twist of 8 radians in a ghaft of length L.
Using equation (16.9), we have

T Cxd =L

i or i o =

J L H

But C = o = Torsional rigidity
Tl
o

If L = one metre and 8 = one radian

& Torsional rigidiy

Then torsional ngidity = Torgue,

i Determine the diameter of a soltd steel shaft which will transmeid 90 kW
al 160 r.pm. Also determisie the length of the shaf? if the tist must not exceed 1® over the endine
fength, The maximum shear streas 18 mted o 60 Nimm®, Take the valie of modiles of rgid
ity = 8 = 10" Nimm?

I, Given :
Power, P=80kW=500x 10¢W
Spead, N = 160 r.p.m
; fi b X .

Angle of twist, f=1" or T radian | lh‘ﬂ' radian
Max, shear stress, 1= 60 Nimm?*
Modulus of npdity, C=8x 10" Mimm®
Lzt D = Diameter of the shaft and

L = Length of the shaft
it} (heameter of (he ahafi
Using equation (16.7)

Pa 2aNT

il

x0T
90 x 10° = =
¥

9 % 107 = 60 : i
T's= s II‘.'-I}' = 537148 Nom = 5371.48 = 10? N-mm
Now using equation (16,41,
T = i}
16 '
T
BATL48 = 1I0F = ll:i = B0 = [F
AAT148= 10" = 16
pu SRPLABXID K16  frrois
K = G0
- D = (4559451 = 76.8 mm.
(55} Length of the shaft
Using equation ( 16.7),
t 8
kR L
il Bx10" ==
| Ta.8 L= 180
i}

Fa

mm, —— rdian |
150

Bx 10" =m= 768
Blx 180 =« 2

= HEE.G mm.
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