
PNS SCHOOL OF ENGINEERING & 
TECHNOLOGY 

NishamaniVihar, Marshaghai, Kendrapara 

 

 
 
 
 

LECTURE NOTES ON 

 
INTELLIGENT COMPUTING 

DEPARTMENT OF COMPUTER SCIENCE & ENGG. 

 
       4TH SEMESTER 

 
 
 
 
 
 

PREPARED BY  

Er.JAYASHREE BISHOI 

LECTURER IN COMPUTER SCIENCE & ENGG. 

 



 Course Content Outline: Intelligent Computing 

Unit 
No. 

Unit Title Topics / Sub-Topics 
Allotted 

Time 
(Hours) 

I 
Introduction to 
Intelligent 
Computing 

Definition and Scope of Intelligent Computing; Evolution 
of Intelligent Systems; Applications of Intelligent 
Computing; Difference between Symbolic AI and 
Statistical AI; Basics of Computational Intelligence 
 

9 

II 
Fuzzy Logic and 
Evolutionary 
Computing 

Introduction to Fuzzy Systems; Fuzzy Sets and 
Membership Functions; Fuzzy Inference Systems; 
Applications of Fuzzy Logic in Control Systems; Genetic 
Algorithms – Basics, Operators, and Applications 
 

9 

III 
Fundamentals of 
Machine Learning 

Introduction to Machine Learning; Supervised Learning; 
Unsupervised Learning; Reinforcement Learning; Data 
Preprocessing Techniques; Feature Engineering Concepts; 
Basic Regression Algorithms; Basic Classification 
Algorithms; Model Evaluation Metrics – Accuracy,  
Precision, Recall, F1-score 
 

9 

IV 
Natural Language 
Processing and 
Expert Systems 

Basics of NLP; Tokenization; Stemming; Lemmatization; 
Named Entity Recognition (NER); Part-of-Speech (POS) 
Tagging; Sentiment Analysis using NLP Techniques; 
Introduction to Expert Systems; Knowledge Representation 

9 

V 
Neural Networks 
and Deep Learning 

 
Basics of Artificial Neural Networks (ANN); Perceptron 
Model; Multilayer Perceptron (MLP); Activation 
Functions; Backpropagation Algorithm; Introduction to 
Convolutional Neural Networks (CNNs); Introduction to 
Recurrent Neural Networks (RNNs); Long Short-Term 
Memory Networks (LSTMs) 

9 

Total Duration: 45 Hours 

  

 

 



 

     Chapter 1 

      Introduction to Intelligent                                                    
     Computing 

Intelligent Computing is an advanced computing paradigm that aims to design systems capable 
of performing tasks that normally require human intelligence. These systems can learn from 
experience, adapt to new inputs, reason logically, and make decisions under uncertainty. 
Intelligent computing integrates concepts from artificial intelligence, machine learning, 
computational intelligence, and data analytics to solve complex real-world problems efficiently. 
With the exponential growth of data and computational resources, intelligent computing has 
become the backbone of modern technologies such as smart assistants, autonomous vehicles, and 
intelligent decision support systems. 

 

1.1 Definition and Scope of Intelligent Computing 

Intelligent Computing can be defined as the study and development of computational systems 
that exhibit intelligent behavior such as learning, reasoning, perception, and adaptation. Unlike 
conventional computing systems that follow fixed instructions, intelligent computing systems 
dynamically improve their performance based on data and experience. 

The scope of intelligent computing is vast and interdisciplinary. It includes areas such as 
artificial intelligence, machine learning, deep learning, neural networks, fuzzy logic, 
evolutionary algorithms, natural language processing, expert systems, robotics, and data mining. 
Intelligent computing systems are capable of handling uncertainty, incomplete information, and 
non-linear problems, making them suitable for real-world applications where traditional 
algorithms fail. 

Example: 
A spam email filter that learns from past emails and improves its accuracy over time is an 
example of intelligent computing. 

Diagram: Scope of Intelligent Computing 
                Intelligent Computing 
                        | 
    ------------------------------------------------ 
    |              |             |               | 
Artificial      Machine     Computational     Data 
Intelligence    Learning    Intelligence     Analytics 
    |              |             | 



 Expert         Deep       Neural Networks, 
 Systems        Learning   Fuzzy Logic, 
 NLP                        Genetic Algorithms 

 

1.2 Evolution of Intelligent Systems 

The evolution of intelligent systems reflects the gradual shift from rigid, rule-based systems to 
adaptive, learning-based models. Early computing systems were deterministic and performed 
predefined operations without learning or adaptability. 

The first phase of intelligent systems focused on symbolic AI, where intelligence was achieved 
through explicitly defined rules and logical reasoning. These systems worked well in controlled 
environments but lacked flexibility. The second phase introduced machine learning, enabling 
systems to learn patterns directly from data. The third phase, driven by deep learning and big 
data, enabled machines to process complex and unstructured data such as images, speech, and 
text with high accuracy. 

Modern intelligent systems often combine symbolic reasoning and statistical learning, resulting 
in hybrid intelligent systems. 

Example: 
Early chess programs used fixed rules, while modern chess engines learn strategies from millions 
of games using deep learning. 

Diagram: Evolution of Intelligent Systems 
Traditional Computing 
        | 
Rule-based Systems (Symbolic AI) 
        | 
Machine Learning Systems 
        | 
Deep Learning Systems 
        | 
Hybrid Intelligent Systems 

 

1.3 Applications of Intelligent Computing 

Intelligent computing has widespread applications across almost every domain due to its ability 
to automate tasks and support intelligent decision-making. 

In healthcare, intelligent systems are used for disease diagnosis, medical image analysis, patient 
monitoring, and drug discovery. In finance, they support fraud detection, credit scoring, and 
algorithmic trading. In manufacturing, intelligent computing enables predictive maintenance, 
quality inspection, and industrial automation. In education, intelligent tutoring systems provide 
personalized learning experiences. 



Other applications include smart cities, autonomous vehicles, voice assistants, recommendation 
systems, cybersecurity, and sentiment analysis in social media. 

Example: 
Netflix uses intelligent computing to recommend movies based on user preferences and viewing 
history. 

Diagram: Applications of Intelligent Computing 
          Intelligent Computing 
                  | 
   ---------------------------------------- 
   |        |        |        |            | 
 Healthcare Finance Education Industry Transportation 
   |        |        |        |            | 
 Diagnosis Fraud   E-learning Automation Self-driving 

 

1.4 Difference Between Symbolic AI and Statistical AI 

Artificial Intelligence can be broadly divided into Symbolic AI and Statistical AI, based on how 
intelligence is represented and processed. 

Symbolic AI uses explicit rules, logic, and symbols to represent knowledge. It focuses on 
reasoning and inference and is commonly used in expert systems. These systems are transparent 
and explainable but struggle with uncertainty and scalability. 

Statistical AI, on the other hand, is data-driven and relies on probability, statistics, and machine 
learning algorithms. These systems learn from large datasets and perform well in complex, 
uncertain environments, though they are often less interpretable. 

Example: 
A medical expert system using IF–THEN rules is symbolic AI, while a disease prediction model 
trained on patient data is statistical AI. 

Diagram: Symbolic AI vs Statistical AI 
Symbolic AI                     Statistical AI 
-----------                    ---------------- 
Rules & Logic                   Data & Probability 
Knowledge-based                 Learning-based 
Explainable                     High Accuracy 
Low Adaptability                Less Interpretability 

 

1.5 Basics of Computational Intelligence 

Computational Intelligence (CI) is a branch of intelligent computing that focuses on biologically 
and naturally inspired computational models capable of learning and adaptation. Unlike 



traditional AI, CI emphasizes numerical processing and approximation rather than symbolic 
reasoning. 

The core components of computational intelligence include Artificial Neural Networks, Fuzzy 
Logic Systems, and Evolutionary Algorithms. Neural networks learn patterns from data, fuzzy 
logic handles uncertainty using linguistic variables, and evolutionary algorithms optimize 
solutions through mechanisms inspired by natural selection. 

Computational intelligence systems are robust, adaptive, and well-suited for solving 
optimization, pattern recognition, and control problems. 

Example: 
A genetic algorithm used to optimize delivery routes is an application of computational 
intelligence. 

Diagram: Components of Computational Intelligence 
        Computational Intelligence 
                    | 
     -------------------------------- 
     |               |              | 
Neural Networks   Fuzzy Logic   Evolutionary 
                                  Algorithms 

 

Conclusion 

Intelligent Computing represents a major shift from traditional programming toward adaptive, 
learning-oriented systems. By integrating intelligent algorithms, data-driven learning, and 
biologically inspired models, intelligent computing enables machines to solve complex real-
world problems efficiently. Its applications continue to expand across domains, making it a 
foundational technology for modern artificial intelligence systems. 

 

 

 

 

 

 

 

 



 

     Chapter 2 

 Fuzzy Logic and Evolutionary Computing 

Fuzzy Logic and Evolutionary Computing are important branches of intelligent computing that 
deal with uncertainty, approximation, and optimization. Traditional computing systems operate 
on precise inputs and binary logic, whereas real-world problems often involve vague, imprecise, 
or incomplete information. Fuzzy logic provides a mathematical framework to model such 
uncertainty using degrees of truth, while evolutionary computing applies biologically inspired 
optimization techniques to search for optimal or near-optimal solutions. Together, these 
approaches play a vital role in modern intelligent systems, especially in control, decision-
making, and optimization problems. 

 

2.1 Introduction to Fuzzy Systems and Fuzzy Sets 

Fuzzy logic is an extension of classical Boolean logic that allows reasoning with imprecise and 
uncertain information. In classical logic, statements are either true or false, represented by 1 or 0. 
However, fuzzy logic allows partial truth values between 0 and 1. A fuzzy system is a rule-based 
system that uses fuzzy logic to map inputs to outputs through fuzzy sets and inference 
mechanisms. 

A fuzzy set is a collection of elements where each element has a degree of membership rather 
than a binary membership. This degree is represented using a membership function, which 
assigns a value between 0 and 1 to each element. 

For example, consider the concept of “temperature.” In classical logic, temperature may be 
classified as either “hot” or “not hot.” In fuzzy logic, temperature can be “slightly hot,” 
“moderately hot,” or “very hot,” each with different membership values. 

Example: 
At 30°C, the membership value for the fuzzy set “Hot” may be 0.6, meaning the temperature is 
moderately hot. 

Diagram: Fuzzy Set Concept 
Membership 
Value 
 1.0 |            ________ 
     |           /        \ 
 0.5 |          /          \ 
     |         /            \ 
 0.0 |________/______________\________ Temperature 



        Cold        Warm        Hot 

 

2.2 Fuzzy Inference Systems and Membership Functions 

A Fuzzy Inference System (FIS) is the core of a fuzzy logic system. It processes fuzzy inputs 
and produces fuzzy or crisp outputs based on a set of fuzzy rules. A typical fuzzy inference 
system consists of four main components: fuzzification, rule base, inference engine, and 
defuzzification. 

Fuzzification converts crisp input values into fuzzy values using membership functions. The 
rule base contains a set of IF–THEN rules defined by experts. The inference engine evaluates 
these rules and combines their results. Finally, defuzzification converts the fuzzy output into a 
crisp value suitable for real-world applications. 

There are two commonly used fuzzy inference models: Mamdani and Sugeno. Mamdani models 
are intuitive and widely used in control systems, while Sugeno models are computationally 
efficient and suitable for optimization and adaptive systems. 

Example Rule: 
IF temperature is high AND humidity is high 
THEN fan speed is fast 

Diagram: Fuzzy Inference System 
Crisp Input 
     | 
Fuzzification 
     | 
Rule Base + Inference Engine 
     | 
Defuzzification 
     | 
Crisp Output 

Diagram: Membership Functions 
Membership 
Value 
 1.0 |      /\        ______ 
     |     /  \      /      \ 
 0.5 |    /    \____/        \ 
     |___/____________________\___ Input 
        Low     Medium        High 

 

2.3 Applications of Fuzzy Logic in Control Systems 



Fuzzy logic is widely used in control systems where precise mathematical models are difficult to 
obtain. Unlike traditional control systems that rely on exact equations, fuzzy controllers use 
linguistic rules and expert knowledge to control system behavior. 

Fuzzy logic controllers are extensively used in consumer electronics, industrial automation, 
automotive systems, and robotics. These controllers are robust, flexible, and easy to design, 
making them suitable for real-time applications. 

Examples of Fuzzy Logic Control Applications: 

 Washing machines to adjust wash time and water level 
 Air conditioners to control temperature smoothly 
 Camera autofocus systems 
 Traffic signal control systems 

Example: 
In an air conditioner, fuzzy logic adjusts cooling speed based on temperature difference and 
room occupancy instead of using fixed thresholds. 

Diagram: Fuzzy Logic Control System 
     Desired Output 
            | 
        Comparator 
            | 
        Fuzzy Controller 
            | 
        Control Action 
            | 
         Plant/System 
            | 
         Feedback 

 

2.4 Genetic Algorithms: Basics 

Genetic Algorithms (GAs) are optimization techniques inspired by the process of natural 
evolution and natural selection. They belong to the class of evolutionary computing methods. 
Genetic algorithms work by evolving a population of candidate solutions over successive 
generations to find an optimal or near-optimal solution. 

A genetic algorithm starts with an initial population of chromosomes, where each chromosome 
represents a potential solution. The algorithm evaluates each chromosome using a fitness 
function. The fittest individuals are selected for reproduction through genetic operators such as 
selection, crossover, and mutation. 

 Selection chooses the best individuals 
 Crossover combines parts of two parents to create offspring 
 Mutation introduces random changes to maintain diversity 



This evolutionary process continues until a termination condition is met. 

Diagram: Genetic Algorithm Process 
Initial Population 
        | 
   Fitness Evaluation 
        | 
      Selection 
        | 
      Crossover 
        | 
      Mutation 
        | 
   New Population 
        | 
   (Repeat until solution found) 

 

2.5 Applications of Genetic Algorithms 

Genetic algorithms are widely used for solving complex optimization and search problems where 
traditional methods fail. They are particularly useful for problems with large search spaces and 
non-linear constraints. 

Applications of Genetic Algorithms include: 

 Optimization problems 
 Feature selection in machine learning 
 Scheduling and resource allocation 
 Route planning and path optimization 
 Neural network weight optimization 

Example: 
A genetic algorithm can be used to find the shortest delivery route for logistics companies by 
evolving optimal paths over generations. 

Diagram: GA Application Example (Optimization) 
Possible Solutions 
        | 
  Fitness Comparison 
        | 
  Best Solution Selected 
        | 
   Optimized Output 

 

Conclusion 



Fuzzy Logic and Evolutionary Computing provide powerful tools for handling uncertainty, 
imprecision, and complex optimization problems. Fuzzy logic enables intelligent reasoning using 
linguistic variables and approximate values, making it suitable for control and decision-making 
systems. Evolutionary computing, through genetic algorithms, offers robust optimization 
techniques inspired by natural evolution. Together, these approaches form a crucial foundation 
for modern intelligent systems used across engineering, industry, and research. 

     Chapter 3 

  Fundamentals of Machine Learning 

Machine Learning (ML) is a core discipline of Artificial Intelligence that focuses on developing 
algorithms and models that enable computer systems to learn patterns from data and improve 
their performance over time without being explicitly programmed. Unlike traditional software 
systems that rely on fixed rules, machine learning systems adapt dynamically by identifying 
relationships within data. Machine learning plays a vital role in modern intelligent systems such 
as recommendation engines, medical diagnosis tools, fraud detection systems, speech 
recognition, and autonomous vehicles. 

 

3.1 Types of Machine Learning 

Machine learning techniques are broadly categorized into supervised learning, unsupervised 
learning, and reinforcement learning, based on the availability of labeled data and the learning 
strategy used. 

3.1.1 Supervised Learning 

Supervised learning is a learning paradigm in which the model is trained using a labeled dataset, 
where each input instance is associated with a known output. The objective is to learn a mapping 
function that can accurately predict outputs for unseen inputs. Supervised learning problems are 
further classified into regression and classification tasks. 

In regression, the output is a continuous value, such as predicting house prices or temperature. In 
classification, the output belongs to a discrete class, such as spam or non-spam email detection. 

Example: 
Predicting student marks based on hours studied is a supervised regression problem. 

Diagram: Supervised Learning 

Labeled Data 
(Input + Output) 



       | 
    ML Model 
       | 
Predictions 

 

3.1.2 Unsupervised Learning 

Unsupervised learning deals with unlabeled data, where the system tries to identify hidden 
patterns or structures without predefined outputs. The main goal is to explore the underlying 
structure of the data. 

Common unsupervised learning tasks include clustering, association rule mining, and 
dimensionality reduction. Clustering groups similar data points together, while dimensionality 
reduction reduces the number of features while preserving essential information. 

Example: 
Grouping customers based on purchasing behavior without predefined categories. 

Diagram: Unsupervised Learning 

Unlabeled Data 
       | 
Pattern Discovery 
       | 
Clusters / Features 

 

3.1.3 Reinforcement Learning 

Reinforcement learning is a learning paradigm where an agent learns by interacting with an 
environment and receiving feedback in the form of rewards or penalties. The agent’s goal is to 
learn an optimal policy that maximizes cumulative rewards over time. 

Unlike supervised learning, reinforcement learning does not require labeled data. Learning 
occurs through trial and error. 

Example: 
A robot learning to navigate a maze by receiving rewards for correct paths. 

Diagram: Reinforcement Learning 

 Agent 
   | 
 Action 
   | 
Environment 
   | 
 Reward / State 
   | 



 (Feedback to Agent) 

 

3.2 Data Preprocessing 

Data preprocessing is a crucial step in machine learning, as real-world data is often noisy, 
incomplete, and inconsistent. Proper preprocessing improves model accuracy and reliability. 

Key preprocessing steps include data cleaning, handling missing values, noise removal, 
normalization, and encoding categorical data. Missing values can be handled using deletion or 
imputation methods such as mean or median substitution. Normalization ensures that features are 
scaled to a common range, preventing bias toward larger numerical values. 

Example: 
Normalizing age and salary values before training a classification model. 

Diagram: Data Preprocessing Steps 

Raw Data 
   | 
Cleaning & Missing Value Handling 
   | 
Normalization & Encoding 
   | 
Processed Data 

 

3.3 Feature Engineering 

Feature engineering involves selecting, transforming, and creating input features to improve the 
performance of machine learning models. It is one of the most critical aspects of the ML 
pipeline. 

Feature selection removes irrelevant or redundant features, while feature construction creates 
new features from existing ones using domain knowledge. Feature scaling ensures uniformity 
among features. 

Example: 
Creating a “BMI” feature from height and weight data improves health prediction models. 

Diagram: Feature Engineering 

Raw Features 
      | 
Feature Selection / Transformation 
      | 
Optimized Feature Set 



 

 

3.4 Basic Regression Algorithms 

Regression algorithms predict continuous numerical values. Linear Regression models the 
relationship between input variables and output using a linear equation. It is widely used due to 
its simplicity and interpretability. 

Other regression techniques include Polynomial Regression, Ridge Regression, and Lasso 
Regression, which handle non-linear relationships and prevent overfitting using regularization 
techniques. 

Example: 
Predicting house prices based on area and location. 

Diagram: Regression Model 

Input Features ----> Regression Model ----> Continuous Output 

 

3.5 Basic Classification Algorithms 

Classification algorithms predict discrete class labels. Logistic Regression is commonly used for 
binary classification problems. Decision Trees classify data by recursively splitting it based on 
feature values. k-Nearest Neighbors (k-NN) classifies data based on similarity, while Support 
Vector Machines (SVM) find an optimal boundary between classes. 

Example: 
Email spam detection using classification algorithms. 

Diagram: Classification Model 

Input Data ----> Classifier ----> Class Label 

 

3.6 Model Evaluation Metrics 

Evaluating machine learning models is essential to measure their performance and generalization 
ability. 

Accuracy measures the ratio of correctly predicted instances to the total number of instances. 
Precision measures the correctness of positive predictions, while Recall measures the ability of 



the model to identify actual positive cases. F1-score is the harmonic mean of precision and recall 
and is useful for imbalanced datasets. 

Example: 
In disease detection, high recall is critical to avoid missing positive cases. 

Diagram: Confusion Matrix 
                Predicted 
             Positive  Negative 
Actual Positive   TP        FN 
Actual Negative   FP        TN 

 

Conclusion 

Fundamentals of Machine Learning form the backbone of intelligent systems by enabling data-
driven learning, prediction, and decision-making. Through supervised, unsupervised, and 
reinforcement learning approaches, along with effective preprocessing, feature engineering, and 
evaluation metrics, machine learning models can solve complex real-world problems with high 
accuracy and adaptability. 

 

     Chapter 4   

Natural Language Processing and Expert Systems 

Natural Language Processing (NLP) is a key area of Artificial Intelligence that enables 
computers to understand, interpret, and generate human language in a meaningful way. Human 
language is complex, ambiguous, and context-dependent, making NLP a challenging yet 
essential component of intelligent systems. With the rapid growth of textual data from sources 
such as social media, emails, online reviews, and digital documents, NLP has become crucial for 
extracting knowledge and supporting intelligent decision-making. Expert systems, on the other 
hand, are knowledge-based AI systems designed to emulate the reasoning ability of human 
experts in specific domains. Together, NLP and expert systems form a strong foundation for 
building intelligent, language-aware decision support systems. 

 

4.1 Basics of Natural Language Processing 

Natural Language Processing involves a series of computational techniques that transform raw 
text into structured representations suitable for analysis. The NLP process typically follows a 



pipeline approach, where each stage refines the text for higher-level understanding. These stages 
include tokenization, normalization, syntactic analysis, and semantic interpretation. 

Tokenization 

Tokenization is the first step in the NLP pipeline and involves breaking a continuous stream of 
text into smaller units called tokens. Tokens may be words, sub-words, or sentences. 
Tokenization helps in analyzing word frequency, sentence structure, and contextual meaning. 

Example: 
Sentence: “Intelligent systems learn from data.” 
Tokens: Intelligent | systems | learn | from | data 

Diagram: Tokenization 

Text Sentence 
      | 
Tokenization 
      | 
Word Tokens 

 

Stemming 

Stemming is a text normalization technique that reduces words to their root or stem by removing 
suffixes and prefixes. The main objective of stemming is to reduce variations of a word to a 
common form, thereby simplifying text analysis. However, stemming may produce non-
dictionary root forms. 

Example: 
Running, runs, runner → run 

Diagram: Stemming 

Different Word Forms 
        | 
     Stemming 
        | 
     Common Stem 

 

Lemmatization 

Lemmatization is an advanced normalization technique that converts words into their base or 
dictionary form, known as a lemma. Unlike stemming, lemmatization considers the grammatical 
context and part of speech of a word, resulting in meaningful root forms. 



Example: 
Better → good 
Running → run 

Diagram: Lemmatization 

Word + POS Information 
          | 
      Lemmatizer 
          | 
        Lemma 

 

Part-of-Speech (POS) Tagging 

POS tagging is the process of assigning grammatical categories such as noun, verb, adjective, or 
adverb to each word in a sentence. POS tagging helps in understanding sentence structure and 
syntactic relationships between words. 

Example: 
Sentence: “The system learns fast.” 
POS Tags: The/DT system/NN learns/VB fast/RB 

Diagram: POS Tagging 

Sentence 
   | 
POS Tagger 
   | 
Word + POS Tag 

 

Named Entity Recognition (NER) 

Named Entity Recognition identifies and classifies named entities in text into predefined 
categories such as person names, locations, organizations, dates, and numerical values. NER 
helps convert unstructured text into structured information. 

Example: 
“Google was founded in California.” 
Entities: Google (Organization), California (Location) 

Diagram: Named Entity Recognition 

Text 
  | 
NER System 
  | 
Identified Entities 



 

 

4.2 Sentiment Analysis using NLP Techniques 

Sentiment Analysis, also known as opinion mining, is an NLP task that determines the emotional 
tone expressed in a piece of text. It classifies opinions as positive, negative, or neutral. Sentiment 
analysis is widely used in customer feedback analysis, social media monitoring, and brand 
reputation management. 

Sentiment analysis systems use preprocessing steps such as tokenization and stop-word removal, 
followed by feature extraction methods like Bag-of-Words or TF-IDF. Machine learning 
classifiers or lexicon-based approaches are then used to predict sentiment. 

Example: 
Text: “The product quality is excellent.” 
Sentiment: Positive 

Diagram: Sentiment Analysis Process 

Text Input 
    | 
Preprocessing 
    | 
Feature Extraction 
    | 
Sentiment Classifier 
    | 
Sentiment Output 

 

4.3 Introduction to Expert Systems 

Expert systems are computer-based intelligent systems that simulate the reasoning and decision-
making ability of a human expert in a specific domain. These systems rely on domain knowledge 
rather than general intelligence and are designed to solve complex problems that typically 
require expert judgment. 

An expert system consists of a knowledge base, an inference engine, and a user interface. The 
knowledge base stores facts and rules, while the inference engine applies logical reasoning to 
derive conclusions. 

Example: 
A medical diagnosis system that suggests diseases based on symptoms. 



Diagram: Expert System Architecture 
User 
 | 
User Interface 
 | 
Inference Engine 
 | 
Knowledge Base 

 

4.4 Knowledge Representation 

Knowledge representation is the method used to encode human knowledge in a form that a 
computer system can understand and reason with. Effective knowledge representation is crucial 
for the performance of expert systems. 

Common knowledge representation techniques include rule-based representation, semantic 
networks, frames, and ontologies. Rule-based systems use IF–THEN rules, while semantic 
networks represent knowledge as interconnected nodes and relationships. 

Example Rule: 
IF fever AND cough 
THEN flu 

Diagram: Rule-Based Knowledge Representation 

IF Condition 
      | 
   THEN Action 

 

Conclusion 

Natural Language Processing and Expert Systems are fundamental components of intelligent 
computing. NLP enables machines to understand and analyze human language, while expert 
systems provide structured reasoning and decision-making capabilities. By combining language 
understanding with expert knowledge, intelligent systems can effectively support real-world 
applications such as decision support, automation, and human-computer interaction. 

 

 

 

 



 

 

 

     Chapter 5 

  Neural Networks and Deep Learning 

 

Neural Networks and Deep Learning represent one of the most powerful paradigms in modern Artificial 
Intelligence, inspired by the structure and functioning of the human brain. These models are capable of 
learning complex, non-linear relationships from large volumes of data and have achieved remarkable 
success in areas such as image recognition, speech processing, natural language understanding, medical 
diagnosis, and autonomous systems. Unlike traditional machine learning algorithms that rely heavily on 
manual feature engineering, deep learning models automatically learn hierarchical representations of data 
through multiple layers of abstraction. 

 

5.1 Basics of Artificial Neural Networks (ANN) 

An Artificial Neural Network (ANN) is a computational model composed of interconnected processing 
units called neurons or nodes. Each neuron receives one or more inputs, applies a weighted sum, adds a 
bias, and passes the result through an activation function to produce an output. The fundamental idea 
behind ANN is to mimic the way biological neurons transmit and process information. 

An ANN typically consists of three types of layers: an input layer, one or more hidden layers, and an 
output layer. The input layer receives raw data, the hidden layers perform intermediate computations, and 
the output layer produces the final prediction. The strength of ANN lies in its ability to approximate 
complex functions by adjusting connection weights during training. 

For example, in a house price prediction problem, input neurons may represent features such as area, 
number of rooms, and location, while the output neuron predicts the estimated price. By learning from 
historical data, the network captures hidden relationships between input features and the target variable. 



 

 

 

 

5.2 Perceptron and Multilayer Perceptron (MLP) 

The Perceptron is the simplest form of a neural network and serves as the fundamental building block of 
ANN. It consists of a single neuron with adjustable weights and a bias term. The perceptron computes a 
weighted sum of inputs and applies a step or threshold activation function to produce a binary output. It is 
mainly used for linearly separable classification problems. 

However, the perceptron has a major limitation: it cannot solve non-linear problems such as the XOR 
problem. To overcome this limitation, the Multilayer Perceptron (MLP) was introduced. An MLP 
consists of multiple layers of neurons, including at least one hidden layer, and uses non-linear activation 
functions. 

MLPs are trained using supervised learning and are capable of learning complex non-linear mappings 
between inputs and outputs. For example, an MLP can be used to classify handwritten digits by learning 
pixel-level patterns through hidden layers. 

 



 

 

 

5.3 Activation Functions and Backpropagation 

Activation functions introduce non-linearity into neural networks, enabling them to learn complex 
patterns. Without activation functions, a neural network would behave like a linear regression model 
regardless of the number of layers. 

Common activation functions include: 

 Sigmoid function, which maps input values between 0 and 1 and is commonly used in binary 
classification. 

 Hyperbolic tangent (tanh), which outputs values between −1 and 1. 

 ReLU (Rectified Linear Unit), which outputs zero for negative inputs and the input value for 
positive inputs, making it computationally efficient and widely used in deep networks. 

 Softmax function, used in multi-class classification to convert outputs into probability 
distributions. 

Backpropagation is the core learning algorithm used to train neural networks. It works by computing the 
error at the output layer and propagating this error backward through the network to update weights using 
gradient descent. The objective is to minimize a loss function that measures the difference between 
predicted and actual outputs. 

For example, during image classification training, if the predicted label differs from the true label, 
backpropagation adjusts the weights to reduce future prediction errors. This iterative process continues 
until the model converges to an optimal solution. 

 

 



 

 

5.4 Introduction to Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a specialized class of deep neural networks designed to 
process grid-like data such as images. Unlike traditional ANN models that use fully connected layers, 
CNNs exploit spatial locality by applying convolution operations using learnable filters. 

A CNN typically consists of convolutional layers, pooling layers, and fully connected layers. 
Convolutional layers extract low-level features such as edges and textures, while deeper layers capture 
high-level features like shapes and objects. Pooling layers reduce spatial dimensions, improving 
computational efficiency and reducing overfitting. 

For example, in face recognition systems, CNNs automatically learn facial features such as eyes, nose, 
and contours from raw pixel values. CNNs have revolutionized computer vision applications, including 
object detection, medical image analysis, and autonomous driving. 

 

 

 

 

 

 

 

 

 

5.5 Introduction to Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are designed to handle sequential data by maintaining a memory of 
previous inputs. Unlike feedforward networks, RNNs have feedback connections that allow information 
to persist over time. This makes them suitable for tasks involving time series data, speech recognition, 
and natural language processing. 

In an RNN, the output at a given time step depends not only on the current input but also on the hidden 
state from the previous time step. However, traditional RNNs suffer from problems such as vanishing and 
exploding gradients, which make it difficult to learn long-term dependencies. 



An example of RNN usage is predicting the next word in a sentence based on previous words, where 
context plays a crucial role in accurate prediction. 

 

 

 

 

5.6 Long Short-Term Memory Networks (LSTMs) 

Long Short-Term Memory (LSTM) networks are an advanced variant of RNNs designed to overcome the 
limitations of traditional RNNs. LSTMs introduce a memory cell along with three gating mechanisms: the 
input gate, forget gate, and output gate. These gates regulate the flow of information, enabling the 
network to retain relevant information for long durations. 

LSTMs are highly effective in modeling long-term dependencies in sequential data. They are widely used 
in applications such as machine translation, speech recognition, sentiment analysis, and deepfake video 
detection. For instance, in sentiment analysis, an LSTM can capture the influence of earlier words on the 



sentiment of an entire sentence. 

 

 

 

 

Conclusion 

Neural Networks and Deep Learning form the backbone of modern intelligent systems. From simple 
perceptrons to advanced architectures such as CNNs and LSTMs, these models enable machines to learn 
hierarchical representations and complex temporal patterns. Their ability to automatically extract features 
and adapt to large-scale data has made deep learning indispensable across a wide range of real-world 
applications. 

 

 


