PNS SCHOOL OF ENGINEERING &
TECHNOLOGY

NishamaniVihar, Marshaghai, Kendrapara

LECTURE NOTES ON

INTELLIGENT COMPUTING

DEPARTMENT OF COMPUTER SCIENCE & ENGG.

4™ SEMESTER

PREPARED BY

Er.JAYASHREE BISHOI

LECTURER IN COMPUTER SCIENCE & ENGG.

Course Content Outline: Intelligent Computing

Unit Allotted
Unit Title Topics / Sub-Topics Time
No.
(Hours)
Definition and Scope of Intelligent Computing; Evolution
Introduction to of Intelligent Systems; Applications of Intelligent
I Intelligent Computing; Difference between Symbolic Al and 9
Computing Statistical Al; Basics of Computational Intelligence
Introduction to Fuzzy Systems; Fuzzy Sets and
Fuzzy Logic and Membership Functions; Fuzzy Inference Systems;
I Evolutionary Applications of Fuzzy Logic in Control Systems; Genetic 9

Computing Algorithms — Basics, Operators, and Applications

Introduction to Machine Learning; Supervised Learning;
Unsupervised Learning; Reinforcement Learning; Data
Preprocessing Techniques; Feature Engineering Concepts;
Fundamentals of
I Machine Learnin Basic Regression Algorithms; Basic Classification 9
£ Algorithms; Model Evaluation Metrics — Accuracy,
Precision, Recall, F1-score

Basics of NLP; Tokenization; Stemming; Lemmatization;
Named Entity Recognition (NER); Part-of-Speech (POS)
Tagging; Sentiment Analysis using NLP Techniques;
Introduction to Expert Systems; Knowledge Representation

Natural Language
IV Processing and
Expert Systems

Basics of Artificial Neural Networks (ANN); Perceptron
Neural Networks Mode}; Multilayer Perceptron (MLP); Activation '
\% and Deep Learning Functlons; Backpropagation Algorithm; Introducthn to 9
Convolutional Neural Networks (CNNs); Introduction to
Recurrent Neural Networks (RNNs); Long Short-Term
Memory Networks (LSTMs)

Total Duration: 45 Hours

Chapter 1

Introduction to Intelligent
Computing

Intelligent Computing is an advanced computing paradigm that aims to design systems capable
of performing tasks that normally require human intelligence. These systems can learn from
experience, adapt to new inputs, reason logically, and make decisions under uncertainty.
Intelligent computing integrates concepts from artificial intelligence, machine learning,
computational intelligence, and data analytics to solve complex real-world problems efficiently.
With the exponential growth of data and computational resources, intelligent computing has
become the backbone of modern technologies such as smart assistants, autonomous vehicles, and
intelligent decision support systems.

1.1 Definition and Scope of Intelligent Computing

Intelligent Computing can be defined as the study and development of computational systems
that exhibit intelligent behavior such as learning, reasoning, perception, and adaptation. Unlike
conventional computing systems that follow fixed instructions, intelligent computing systems
dynamically improve their performance based on data and experience.

The scope of intelligent computing is vast and interdisciplinary. It includes areas such as
artificial intelligence, machine learning, deep learning, neural networks, fuzzy logic,
evolutionary algorithms, natural language processing, expert systems, robotics, and data mining.
Intelligent computing systems are capable of handling uncertainty, incomplete information, and
non-linear problems, making them suitable for real-world applications where traditional
algorithms fail.

Example:
A spam email filter that learns from past emails and improves its accuracy over time is an
example of intelligent computing.

Diagram: Scope of Intelligent Computing
Intelligent Computing

Artificial Machine Computational Data
Intelligence Learning Intelligence Analytics

Expert Deep Neural Networks,
Systems Learning Fuzzy Logic,
NLP Genetic Algorithms

1.2 Evolution of Intelligent Systems

The evolution of intelligent systems reflects the gradual shift from rigid, rule-based systems to
adaptive, learning-based models. Early computing systems were deterministic and performed
predefined operations without learning or adaptability.

The first phase of intelligent systems focused on symbolic AI, where intelligence was achieved
through explicitly defined rules and logical reasoning. These systems worked well in controlled
environments but lacked flexibility. The second phase introduced machine learning, enabling
systems to learn patterns directly from data. The third phase, driven by deep learning and big
data, enabled machines to process complex and unstructured data such as images, speech, and
text with high accuracy.

Modern intelligent systems often combine symbolic reasoning and statistical learning, resulting
in hybrid intelligent systems.

Example:
Early chess programs used fixed rules, while modern chess engines learn strategies from millions
of games using deep learning.

Diagram: Evolution of Intelligent Systems
Traditional Computing

|
Rule-based Systems (Symbolic ATI)

Machine Learning Systems

Deep Learning Systems

|
Hybrid Intelligent Systems

1.3 Applications of Intelligent Computing

Intelligent computing has widespread applications across almost every domain due to its ability
to automate tasks and support intelligent decision-making.

In healthcare, intelligent systems are used for disease diagnosis, medical image analysis, patient
monitoring, and drug discovery. In finance, they support fraud detection, credit scoring, and
algorithmic trading. In manufacturing, intelligent computing enables predictive maintenance,
quality inspection, and industrial automation. In education, intelligent tutoring systems provide
personalized learning experiences.

Other applications include smart cities, autonomous vehicles, voice assistants, recommendation
systems, cybersecurity, and sentiment analysis in social media.

Example:
Netflix uses intelligent computing to recommend movies based on user preferences and viewing
history.

Diagram: Applications of Intelligent Computing
Intelligent Computing

Healthcare Finance Education Industry Transportation

Diagnosis Fraud E-learning Automation Self-driving

1.4 Difference Between Symbolic Al and Statistical Al

Artificial Intelligence can be broadly divided into Symbolic AI and Statistical Al, based on how
intelligence is represented and processed.

Symbolic AI uses explicit rules, logic, and symbols to represent knowledge. It focuses on
reasoning and inference and is commonly used in expert systems. These systems are transparent
and explainable but struggle with uncertainty and scalability.

Statistical Al, on the other hand, is data-driven and relies on probability, statistics, and machine
learning algorithms. These systems learn from large datasets and perform well in complex,
uncertain environments, though they are often less interpretable.

Example:
A medical expert system using IF-THEN rules is symbolic Al, while a disease prediction model

trained on patient data is statistical Al

Diagram: Symbolic Al vs Statistical Al

Symbolic AT Statistical AI

Rules & Logic Data & Probability
Knowledge-based Learning-based
Explainable High Accuracy

Low Adaptability Less Interpretability

1.5 Basics of Computational Intelligence

Computational Intelligence (CI) is a branch of intelligent computing that focuses on biologically
and naturally inspired computational models capable of learning and adaptation. Unlike

traditional Al, CI emphasizes numerical processing and approximation rather than symbolic
reasoning.

The core components of computational intelligence include Artificial Neural Networks, Fuzzy
Logic Systems, and Evolutionary Algorithms. Neural networks learn patterns from data, fuzzy
logic handles uncertainty using linguistic variables, and evolutionary algorithms optimize
solutions through mechanisms inspired by natural selection.

Computational intelligence systems are robust, adaptive, and well-suited for solving
optimization, pattern recognition, and control problems.

Example:
A genetic algorithm used to optimize delivery routes is an application of computational
intelligence.

Diagram: Components of Computational Intelligence
Computational Intelligence

Neural Networks Fuzzy Logic Evolutionary
Algorithms

Conclusion

Intelligent Computing represents a major shift from traditional programming toward adaptive,
learning-oriented systems. By integrating intelligent algorithms, data-driven learning, and
biologically inspired models, intelligent computing enables machines to solve complex real-
world problems efficiently. Its applications continue to expand across domains, making it a
foundational technology for modern artificial intelligence systems.

Chapter 2

Fuzzy Logic and Evolutionary Computing

Fuzzy Logic and Evolutionary Computing are important branches of intelligent computing that
deal with uncertainty, approximation, and optimization. Traditional computing systems operate
on precise inputs and binary logic, whereas real-world problems often involve vague, imprecise,
or incomplete information. Fuzzy logic provides a mathematical framework to model such
uncertainty using degrees of truth, while evolutionary computing applies biologically inspired
optimization techniques to search for optimal or near-optimal solutions. Together, these
approaches play a vital role in modern intelligent systems, especially in control, decision-
making, and optimization problems.

2.1 Introduction to Fuzzy Systems and Fuzzy Sets

Fuzzy logic is an extension of classical Boolean logic that allows reasoning with imprecise and
uncertain information. In classical logic, statements are either true or false, represented by 1 or 0.
However, fuzzy logic allows partial truth values between 0 and 1. A fuzzy system is a rule-based
system that uses fuzzy logic to map inputs to outputs through fuzzy sets and inference
mechanisms.

A fuzzy set is a collection of elements where each element has a degree of membership rather
than a binary membership. This degree is represented using a membership function, which
assigns a value between 0 and 1 to each element.

For example, consider the concept of “temperature.” In classical logic, temperature may be
classified as either “hot” or “not hot.” In fuzzy logic, temperature can be “slightly hot,”
“moderately hot,” or “very hot,” each with different membership values.

Example:
At 30°C, the membership value for the fuzzy set “Hot” may be 0.6, meaning the temperature is
moderately hot.

Diagram: Fuzzy Set Concept
Membership

Value

1.0 |
|

0.5 | / \
|
|

0.0 / \ Temperature

Cold Warm Hot

2.2 Fuzzy Inference Systems and Membership Functions

A Fuzzy Inference System (FIS) is the core of a fuzzy logic system. It processes fuzzy inputs
and produces fuzzy or crisp outputs based on a set of fuzzy rules. A typical fuzzy inference
system consists of four main components: fuzzification, rule base, inference engine, and
defuzzification.

Fuzzification converts crisp input values into fuzzy values using membership functions. The
rule base contains a set of [F-THEN rules defined by experts. The inference engine evaluates
these rules and combines their results. Finally, defuzzification converts the fuzzy output into a
crisp value suitable for real-world applications.

There are two commonly used fuzzy inference models: Mamdani and Sugeno. Mamdani models
are intuitive and widely used in control systems, while Sugeno models are computationally
efficient and suitable for optimization and adaptive systems.

Example Rule:
IF temperature is high AND humidity is high
THEN fan speed is fast

Diagram: Fuzzy Inference System
Crisp Input
|

Fuzzification

Rule Base + Inference Engine

Defuzzification

|
Crisp Output

Diagram: Membership Functions

Membership
Value
1.0 | /\ o
| / A\ / \
0.5 | / _/ \
|/ \ Input
Low Medium High

2.3 Applications of Fuzzy Logic in Control Systems

Fuzzy logic is widely used in control systems where precise mathematical models are difficult to
obtain. Unlike traditional control systems that rely on exact equations, fuzzy controllers use
linguistic rules and expert knowledge to control system behavior.

Fuzzy logic controllers are extensively used in consumer electronics, industrial automation,
automotive systems, and robotics. These controllers are robust, flexible, and easy to design,
making them suitable for real-time applications.

Examples of Fuzzy Logic Control Applications:

e Washing machines to adjust wash time and water level
e Air conditioners to control temperature smoothly

o Camera autofocus systems

o Traffic signal control systems

Example:
In an air conditioner, fuzzy logic adjusts cooling speed based on temperature difference and
room occupancy instead of using fixed thresholds.

Diagram: Fuzzy Logic Control System

Desired Output
|

Comparator

Fuzzy Controller

Control Action

|
Plant/System

|
Feedback

2.4 Genetic Algorithms: Basics

Genetic Algorithms (GAs) are optimization techniques inspired by the process of natural
evolution and natural selection. They belong to the class of evolutionary computing methods.
Genetic algorithms work by evolving a population of candidate solutions over successive
generations to find an optimal or near-optimal solution.

A genetic algorithm starts with an initial population of chromosomes, where each chromosome
represents a potential solution. The algorithm evaluates each chromosome using a fitness
function. The fittest individuals are selected for reproduction through genetic operators such as
selection, crossover, and mutation.

e Selection chooses the best individuals
e Crossover combines parts of two parents to create offspring
e Mutation introduces random changes to maintain diversity

This evolutionary process continues until a termination condition is met.

Diagram: Genetic Algorithm Process
Initial Population

Fitness Evaluation

Selection

Crossover

Mutation
|

New Population

(Repeat until solution found)

2.5 Applications of Genetic Algorithms

Genetic algorithms are widely used for solving complex optimization and search problems where
traditional methods fail. They are particularly useful for problems with large search spaces and
non-linear constraints.

Applications of Genetic Algorithms include:

e Optimization problems

o Feature selection in machine learning
e Scheduling and resource allocation

e Route planning and path optimization
e Neural network weight optimization

Example:
A genetic algorithm can be used to find the shortest delivery route for logistics companies by
evolving optimal paths over generations.

Diagram: GA Application Example (Optimization)
Possible Solutions

Fitness Comparison

|
Best Solution Selected

|
Optimized Output

Conclusion

Fuzzy Logic and Evolutionary Computing provide powerful tools for handling uncertainty,
imprecision, and complex optimization problems. Fuzzy logic enables intelligent reasoning using
linguistic variables and approximate values, making it suitable for control and decision-making
systems. Evolutionary computing, through genetic algorithms, offers robust optimization
techniques inspired by natural evolution. Together, these approaches form a crucial foundation
for modern intelligent systems used across engineering, industry, and research.

Chapter 3

Fundamentals of Machine Learning

Machine Learning (ML) is a core discipline of Artificial Intelligence that focuses on developing
algorithms and models that enable computer systems to learn patterns from data and improve
their performance over time without being explicitly programmed. Unlike traditional software
systems that rely on fixed rules, machine learning systems adapt dynamically by identifying
relationships within data. Machine learning plays a vital role in modern intelligent systems such
as recommendation engines, medical diagnosis tools, fraud detection systems, speech
recognition, and autonomous vehicles.

3.1 Types of Machine Learning

Machine learning techniques are broadly categorized into supervised learning, unsupervised
learning, and reinforcement learning, based on the availability of labeled data and the learning
strategy used.

3.1.1 Supervised Learning

Supervised learning is a learning paradigm in which the model is trained using a labeled dataset,
where each input instance is associated with a known output. The objective is to learn a mapping
function that can accurately predict outputs for unseen inputs. Supervised learning problems are

further classified into regression and classification tasks.

In regression, the output is a continuous value, such as predicting house prices or temperature. In
classification, the output belongs to a discrete class, such as spam or non-spam email detection.

Example:
Predicting student marks based on hours studied is a supervised regression problem.

Diagram: Supervised Learning

Labeled Data
(Input + Output)

|
ML Model

Predictions

3.1.2 Unsupervised Learning

Unsupervised learning deals with unlabeled data, where the system tries to identify hidden
patterns or structures without predefined outputs. The main goal is to explore the underlying
structure of the data.

Common unsupervised learning tasks include clustering, association rule mining, and
dimensionality reduction. Clustering groups similar data points together, while dimensionality
reduction reduces the number of features while preserving essential information.

Example:
Grouping customers based on purchasing behavior without predefined categories.

Diagram: Unsupervised Learning

Unlabeled Data
|

Pattern Discovery

Clusters / Features

3.1.3 Reinforcement Learning

Reinforcement learning is a learning paradigm where an agent learns by interacting with an
environment and receiving feedback in the form of rewards or penalties. The agent’s goal is to
learn an optimal policy that maximizes cumulative rewards over time.

Unlike supervised learning, reinforcement learning does not require labeled data. Learning
occurs through trial and error.

Example:
A robot learning to navigate a maze by receiving rewards for correct paths.

Diagram: Reinforcement Learning

Agent
\
Action

Environment

\
Reward / State

(Feedback to Agent)

3.2 Data Preprocessing

Data preprocessing is a crucial step in machine learning, as real-world data is often noisy,
incomplete, and inconsistent. Proper preprocessing improves model accuracy and reliability.

Key preprocessing steps include data cleaning, handling missing values, noise removal,
normalization, and encoding categorical data. Missing values can be handled using deletion or
imputation methods such as mean or median substitution. Normalization ensures that features are
scaled to a common range, preventing bias toward larger numerical values.

Example:
Normalizing age and salary values before training a classification model.

Diagram: Data Preprocessing Steps

Raw Data

Cleaning & Missing Value Handling

Normalization & Encoding

Processed Data

3.3 Feature Engineering

Feature engineering involves selecting, transforming, and creating input features to improve the
performance of machine learning models. It is one of the most critical aspects of the ML
pipeline.

Feature selection removes irrelevant or redundant features, while feature construction creates
new features from existing ones using domain knowledge. Feature scaling ensures uniformity
among features.

Example:
Creating a “BMI” feature from height and weight data improves health prediction models.

Diagram: Feature Engineering

Raw Features

Feature Selection / Transformation

\
Optimized Feature Set

3.4 Basic Regression Algorithms

Regression algorithms predict continuous numerical values. Linear Regression models the
relationship between input variables and output using a linear equation. It is widely used due to
its simplicity and interpretability.

Other regression techniques include Polynomial Regression, Ridge Regression, and Lasso
Regression, which handle non-linear relationships and prevent overfitting using regularization

techniques.

Example:
Predicting house prices based on area and location.

Diagram: Regression Model

Input Features ----> Regression Model ----> Continuous Output

3.5 Basic Classification Algorithms

Classification algorithms predict discrete class labels. Logistic Regression is commonly used for
binary classification problems. Decision Trees classify data by recursively splitting it based on
feature values. k-Nearest Neighbors (k-NN) classifies data based on similarity, while Support
Vector Machines (SVM) find an optimal boundary between classes.

Example:
Email spam detection using classification algorithms.

Diagram: Classification Model

Input Data ----> Classifier ----> Class Label

3.6 Model Evaluation Metrics

Evaluating machine learning models is essential to measure their performance and generalization
ability.

Accuracy measures the ratio of correctly predicted instances to the total number of instances.
Precision measures the correctness of positive predictions, while Recall measures the ability of

the model to identify actual positive cases. F1-score is the harmonic mean of precision and recall
and is useful for imbalanced datasets.

Example:
In disease detection, high recall is critical to avoid missing positive cases.

Diagram: Confusion Matrix

Predicted
Positive Negative
Actual Positive TP FN
Actual Negative FP TN

Conclusion

Fundamentals of Machine Learning form the backbone of intelligent systems by enabling data-
driven learning, prediction, and decision-making. Through supervised, unsupervised, and
reinforcement learning approaches, along with effective preprocessing, feature engineering, and
evaluation metrics, machine learning models can solve complex real-world problems with high
accuracy and adaptability.

Chapter 4

Natural Language Processing and Expert Systems

Natural Language Processing (NLP) is a key area of Artificial Intelligence that enables
computers to understand, interpret, and generate human language in a meaningful way. Human
language is complex, ambiguous, and context-dependent, making NLP a challenging yet
essential component of intelligent systems. With the rapid growth of textual data from sources
such as social media, emails, online reviews, and digital documents, NLP has become crucial for
extracting knowledge and supporting intelligent decision-making. Expert systems, on the other
hand, are knowledge-based Al systems designed to emulate the reasoning ability of human
experts in specific domains. Together, NLP and expert systems form a strong foundation for
building intelligent, language-aware decision support systems.

4.1 Basics of Natural Language Processing

Natural Language Processing involves a series of computational techniques that transform raw
text into structured representations suitable for analysis. The NLP process typically follows a

pipeline approach, where each stage refines the text for higher-level understanding. These stages
include tokenization, normalization, syntactic analysis, and semantic interpretation.

Tokenization

Tokenization is the first step in the NLP pipeline and involves breaking a continuous stream of
text into smaller units called tokens. Tokens may be words, sub-words, or sentences.
Tokenization helps in analyzing word frequency, sentence structure, and contextual meaning.

Example:
Sentence: “Intelligent systems learn from data.’
Tokens: Intelligent | systems | learn | from | data

’

Diagram: Tokenization

Text Sentence

Tokenization

Word Tokens

Stemming

Stemming is a text normalization technique that reduces words to their root or stem by removing
suffixes and prefixes. The main objective of stemming is to reduce variations of a word to a
common form, thereby simplifying text analysis. However, stemming may produce non-
dictionary root forms.

Example:
Running, runs, runner — run

Diagram: Stemming

Different Word Forms

Stemming

Common Stem

Lemmatization

Lemmatization is an advanced normalization technique that converts words into their base or
dictionary form, known as a lemma. Unlike stemming, lemmatization considers the grammatical
context and part of speech of a word, resulting in meaningful root forms.

Example:
Better — good
Running — run

Diagram: Lemmatization

Word + POS Information

Lemmatizer

Lemma

Part-of-Speech (POS) Tagging

POS tagging is the process of assigning grammatical categories such as noun, verb, adjective, or
adverb to each word in a sentence. POS tagging helps in understanding sentence structure and
syntactic relationships between words.

Example:
Sentence: “The system learns fast.”
POS Tags: The/DT system/NN learns/VB fast/RB

Diagram: POS Tagging

Sentence

\
POS Tagger

\
Word + POS Tag

Named Entity Recognition (NER)

Named Entity Recognition identifies and classifies named entities in text into predefined
categories such as person names, locations, organizations, dates, and numerical values. NER
helps convert unstructured text into structured information.

Example:
“Google was founded in California.”
Entities: Google (Organization), California (Location)

Diagram: Named Entity Recognition

Text
\
NER System

\
Identified Entities

4.2 Sentiment Analysis using NLP Techniques

Sentiment Analysis, also known as opinion mining, is an NLP task that determines the emotional
tone expressed in a piece of text. It classifies opinions as positive, negative, or neutral. Sentiment
analysis is widely used in customer feedback analysis, social media monitoring, and brand
reputation management.

Sentiment analysis systems use preprocessing steps such as tokenization and stop-word removal,
followed by feature extraction methods like Bag-of-Words or TF-IDF. Machine learning
classifiers or lexicon-based approaches are then used to predict sentiment.

Example:
Text: “The product quality is excellent.”
Sentiment: Positive

Diagram: Sentiment Analysis Process

Text Input
|

Preprocessing

Feature Extraction

Sentiment Classifier

|
Sentiment Output

4.3 Introduction to Expert Systems

Expert systems are computer-based intelligent systems that simulate the reasoning and decision-
making ability of a human expert in a specific domain. These systems rely on domain knowledge
rather than general intelligence and are designed to solve complex problems that typically
require expert judgment.

An expert system consists of a knowledge base, an inference engine, and a user interface. The
knowledge base stores facts and rules, while the inference engine applies logical reasoning to
derive conclusions.

Example:
A medical diagnosis system that suggests diseases based on symptoms.

Diagram: Expert System Architecture
User

User Interface

Inference Engine

Knowledge Base

4.4 Knowledge Representation

Knowledge representation is the method used to encode human knowledge in a form that a
computer system can understand and reason with. Effective knowledge representation is crucial
for the performance of expert systems.

Common knowledge representation techniques include rule-based representation, semantic
networks, frames, and ontologies. Rule-based systems use [F-THEN rules, while semantic
networks represent knowledge as interconnected nodes and relationships.

Example Rule:
IF fever AND cough
THEN flu

Diagram: Rule-Based Knowledge Representation

IF Condition

\
THEN Action

Conclusion

Natural Language Processing and Expert Systems are fundamental components of intelligent
computing. NLP enables machines to understand and analyze human language, while expert
systems provide structured reasoning and decision-making capabilities. By combining language
understanding with expert knowledge, intelligent systems can effectively support real-world
applications such as decision support, automation, and human-computer interaction.

Chapter 5

Neural Networks and Deep Learning

Neural Networks and Deep Learning represent one of the most powerful paradigms in modern Artificial
Intelligence, inspired by the structure and functioning of the human brain. These models are capable of
learning complex, non-linear relationships from large volumes of data and have achieved remarkable
success in areas such as image recognition, speech processing, natural language understanding, medical
diagnosis, and autonomous systems. Unlike traditional machine learning algorithms that rely heavily on
manual feature engineering, deep learning models automatically learn hierarchical representations of data
through multiple layers of abstraction.

5.1 Basics of Artificial Neural Networks (ANN)

An Artificial Neural Network (ANN) is a computational model composed of interconnected processing
units called neurons or nodes. Each neuron receives one or more inputs, applies a weighted sum, adds a
bias, and passes the result through an activation function to produce an output. The fundamental idea
behind ANN is to mimic the way biological neurons transmit and process information.

An ANN typically consists of three types of layers: an input layer, one or more hidden layers, and an
output layer. The input layer receives raw data, the hidden layers perform intermediate computations, and
the output layer produces the final prediction. The strength of ANN lies in its ability to approximate
complex functions by adjusting connection weights during training.

For example, in a house price prediction problem, input neurons may represent features such as area,
number of rooms, and location, while the output neuron predicts the estimated price. By learning from
historical data, the network captures hidden relationships between input features and the target variable.

¥
a><onm
- terminals

il"‘lz Z f out

bias

5.2 Perceptron and Multilayer Perceptron (MLP)

The Perceptron is the simplest form of a neural network and serves as the fundamental building block of
ANN. It consists of a single neuron with adjustable weights and a bias term. The perceptron computes a
weighted sum of inputs and applies a step or threshold activation function to produce a binary output. It is
mainly used for linearly separable classification problems.

However, the perceptron has a major limitation: it cannot solve non-linear problems such as the XOR
problem. To overcome this limitation, the Multilayer Perceptron (MLP) was introduced. An MLP
consists of multiple layers of neurons, including at least one hidden layer, and uses non-linear activation
functions.

MLPs are trained using supervised learning and are capable of learning complex non-linear mappings
between inputs and outputs. For example, an MLP can be used to classify handwritten digits by learning
pixel-level patterns through hidden layers.

> | output

legeat varabie o

Ourpnt Soone
TRUL TALSE

N\ |
R >V‘ >
» J
N Outpat vanable ¢
.
.

5.3 Activation Functions and Backpropagation

Activation functions introduce non-linearity into neural networks, enabling them to learn complex
patterns. Without activation functions, a neural network would behave like a linear regression model
regardless of the number of layers.

Common activation functions include:

e Sigmoid function, which maps input values between 0 and 1 and is commonly used in binary
classification.

¢ Hyperbolic tangent (tanh), which outputs values between —1 and 1.

¢ ReLU (Rectified Linear Unit), which outputs zero for negative inputs and the input value for
positive inputs, making it computationally efficient and widely used in deep networks.

¢ Softmax function, used in multi-class classification to convert outputs into probability
distributions.

Backpropagation is the core learning algorithm used to train neural networks. It works by computing the
error at the output layer and propagating this error backward through the network to update weights using
gradient descent. The objective is to minimize a loss function that measures the difference between
predicted and actual outputs.

For example, during image classification training, if the predicted label differs from the true label,
backpropagation adjusts the weights to reduce future prediction errors. This iterative process continues
until the model converges to an optimal solution.

5.4 Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specialized class of deep neural networks designed to
process grid-like data such as images. Unlike traditional ANN models that use fully connected layers,
CNNs exploit spatial locality by applying convolution operations using learnable filters.

A CNN typically consists of convolutional layers, pooling layers, and fully connected layers.
Convolutional layers extract low-level features such as edges and textures, while deeper layers capture
high-level features like shapes and objects. Pooling layers reduce spatial dimensions, improving
computational efficiency and reducing overfitting.

For example, in face recognition systems, CNNs automatically learn facial features such as eyes, nose,
and contours from raw pixel values. CNNs have revolutionized computer vision applications, including
object detection, medical image analysis, and autonomous driving.

1/9*2+ 1/9*2+ 1/9* 4 +
1/9* 2+ 1/9*2+ 1/9* 4 +

Kemel Input Image VST T +M1ID* T +NOD*3 = 4
/9 | w9 | 179 2 2 a4 a4 = 3 3 3 z Output Image
—
1/ 1/9 |)F+S E . 2 4 a4 = 3 3 3 = a4 a4 a4 3 3 2
19 | /9 | 1/9 7 7 3 3 2 1 1 1 g aq 3 a4 3 3 2 4
3 3 1 1 11 1 2 2 4 3 4 3 3 2
3 3 4 4 4 3 2 d 4 4 4 4 4 =
6 6 6 4 4 3 9 5 5 S 4 4
6 6 6 6 6 = 6 6 6 S <
6 6 6 6 6

5.5 Introduction to Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are designed to handle sequential data by maintaining a memory of
previous inputs. Unlike feedforward networks, RNNs have feedback connections that allow information
to persist over time. This makes them suitable for tasks involving time series data, speech recognition,
and natural language processing.

In an RNN, the output at a given time step depends not only on the current input but also on the hidden
state from the previous time step. However, traditional RNNs suffer from problems such as vanishing and
exploding gradients, which make it difficult to learn long-term dependencies.

An example of RNN usage is predicting the next word in a sentence based on previous words, where
context plays a crucial role in accurate prediction.

AN e — T C Tt TR — T e o —
I ccccacrorce=~T A =« ae—l1 A= T eI

= gpquemce = AJAS ceit= Felaaeot =2 agr—am
}_%7 %‘ — e T
= e e
D =A/A < e) —_—

A AN — e Throcgi~te
= o= mualtipole copiea=s <€

“ ==y i T i = —_—c e L — S~ e — s — e,
‘ P — N "N PCASS‘V\? < W\@,&Smae
T o Scacce===cc.)
® } @@daansan_ml
)

1Sk<e

Ix, ax, > T ’ -
o ;'I_Ik %, ’l_I W, diag(o’'(x.-1)) (5)
N>

W ~small ©=>» Vanishing

W ~ large ©=» Exploding

Formula Source: Razvan Pascanu et al. (2013)

Deep Learning A-Z © SuperDataScience

5.6 Long Short-Term Memory Networks (LSTMs)

Long Short-Term Memory (LSTM) networks are an advanced variant of RNNs designed to overcome the
limitations of traditional RNNs. LSTMs introduce a memory cell along with three gating mechanisms: the
input gate, forget gate, and output gate. These gates regulate the flow of information, enabling the
network to retain relevant information for long durations.

LSTMs are highly effective in modeling long-term dependencies in sequential data. They are widely used
in applications such as machine translation, speech recognition, sentiment analysis, and deepfake video
detection. For instance, in sentiment analysis, an LSTM can capture the influence of earlier words on the

sentiment of an entire sentence.

Output Gate

~

= vector connections

-

LSTM CELL

I
Ct-1 : ﬁ = Sigmoid function
Ll Al]
1 1 |
—————————— 1 1 |
————— 1 1 I ~)
\ 1 1 " = tanh function
1 I I 1
1 1 1 |
1 I I I
[1 1 | P
1 1 1 | = point-by-point
1 0 1 | multiplication
1 Ji 1 .
1 1 1 | p—
h ! ! ! 1 - = point-by-point
= + - : ! N addition
1 1 I I
- |
[
I
I
1

Conclusion

Neural Networks and Deep Learning form the backbone of modern intelligent systems. From simple
perceptrons to advanced architectures such as CNNs and LSTMs, these models enable machines to learn
hierarchical representations and complex temporal patterns. Their ability to automatically extract features
and adapt to large-scale data has made deep learning indispensable across a wide range of real-world
applications.

